Catch a falling star and find out where it came from

Dec 14, 2010 by Colin Smith
Catch a falling star and find out where it came from
One of the 'star gazing' cameras in the Australian outback

(PhysOrg.com) -- Scientists are celebrating the discovery of a second meteorite in the Western Australian desert using ‘star gazing’ cameras. The images from the cameras will reveal the space rock’s original orbit in the Solar System.

Meteorites are a geological record of the formation of the Solar System, providing important information about early conditions. Locating where they come from is important, because it enables scientists to link geological information to the correct location in space. However, information about where individual meteorites originated, and how they moved around the Solar System before falling to Earth is rare; we know the origins of only a dozen of around 1100 documented falls over the past 200 years.

Dr Phil Bland, from the Department of Earth Science and Engineering at Imperial College London, leads the team that found the new meteorite: “Meteorites are like ancient jigsaw puzzle pieces. When we find out where one comes from, it is like putting in another tiny piece of the puzzle, providing insights into the workings of our solar system and how it began billions of years ago. We are absolutely over the moon that our camera network has helped us to locate a new meteorite for the second consecutive year.”

The cameras each take a time-lapse picture every night, to record any meteorites, which can be identified from the fireballs they form as they travel through Earth’s atmosphere. Every six weeks, the film is collected by local farmers, who mail the film to the researchers for analysis. If a meteorite fireball is detected on the film, the researchers use complex calculations and climate models to predict what orbit the meteorite was following and where the meteorite is likely to have landed, so that they can retrieve it. The cameras are accurate, enabling the researchers to pinpoint the most recent meteorite to within 150 metres from where it had landed.

This new meteorite, which is the size of a fifty pence piece, was found in the Nullarbor Plain in Western Australia by researchers from Imperial College London, the Ondrejov Observatory in the Czech Republic, and the Western Australian Museum and Curtin University in Perth, Australia. The next step will see the team analysing the space rock to find out more about its chemistry and original orbit.

The researchers hope that the new meteorite will add to the information revealed by the meteorite found in 2009 using the same cameras. This first meteorite was composed of a rare basaltic igneous rock that had broken away from its parent asteroid in the rocky belt between Mars and Jupiter, orbiting the Sun on a similar trajectory to Earth, before crashing into it. Finding the meteorite helped to support the theory that asteroids provided the building blocks for terrestrial planets when the Solar System was forming.

Dr Bland believes that using networks of cameras to locate meteorites on Earth could provide a low-cost alternative to expensive space missions. He explains:

“NASA is planning the 2018 OSIRIS-Rex mission, which could see a space probe landing on an asteroid called 1999 RQ36. The hope is to collect and bring the rock back to Earth for analysis. Missions like these are extremely valuable, but there are considerable risks. Research like ours could supplement such missions, by providing a low-cost alternative that can be rapidly deployed around the planet to help us learn more about our .”

Explore further: SDO captures images of two mid-level flares

add to favorites email to friend print save as pdf

Related Stories

One-of-a-kind meteorite unveiled

Apr 22, 2006

The depths of space are much closer to home following the University of Alberta's acquisition of a meteorite that is the only one of its kind known to exist on Earth! What makes it so rare? The meteorite is 'pristine' – ...

Unusual meteorite found in Antarctica

Sep 19, 2006

U.S. scientists say they recovered an unusual meteorite late last year in Antarctica -- a type of lunar meteorite seen only once before.

Recommended for you

SDO captures images of two mid-level flares

14 hours ago

The sun emitted a mid-level flare on Dec. 18, 2014, at 4:58 p.m. EST. NASA's Solar Dynamics Observatory, which watches the sun constantly, captured an image of the event. Solar flares are powerful bursts ...

Why is Venus so horrible?

21 hours ago

Venus sucks. Seriously, it's the worst. The global temperature is as hot as an oven, the atmospheric pressure is 90 times Earth, and it rains sulfuric acid. Every part of the surface of Venus would kill you ...

Image: Christmas wrapping the Sentinel-3A antenna

Dec 19, 2014

The moment a team of technicians, gowned like hospital surgeons, wraps the Sentinel-3A radar altimeter in multilayer insulation to protect it from the temperature extremes found in Earth orbit.

Video: Flying over Becquerel

Dec 19, 2014

This latest release from the camera on ESA's Mars Express is a simulated flight over the Becquerel crater, showing large-scale deposits of sedimentary material.

Spinning up a dust devil on Mars

Dec 19, 2014

Spinning up a dust devil in the thin air of Mars requires a stronger updraft than is needed to create a similar vortex on Earth, according to research at The University of Alabama in Huntsville (UAH).

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.