Researchers discover compound with potent effects on the biological clock

Dec 14, 2010

Using automated screening techniques developed by pharmaceutical companies to find new drugs, researchers from UC San Diego and three other research institutions have discovered a molecule with the most potent effects ever seen on the biological clock.

Dubbed "longdaysin," for its ability to dramatically slow down the biological clock, the new compound could pave the way for a host of new drugs to treat severe or quickly reset the biological clocks of jet-lagged travelers who regularly travel across multiple time zones. The researchers demonstrated the dramatic effects of longdaysin by lengthening the biological clocks of larval zebra fish by more than 10 hours. The article will be published in next week's issue of the online, open access journal .

"Theoretically, longdaysin or a compound like it could be used to correct sleep disorders such as the Familial Advanced Sleep syndrome, which is characterized by a clock that's running too fast," said Steve Kay, dean of UCSD's Division of Biological Sciences, who headed the research team. "A compound that makes the clock slow down or speed up can also be used to phase-shift the clock—in other words, to bump or reset the hands of the clock. This would help your body catch up when it is jet lagged or reset it to a normal day-night cycle when it has been thrown out of phase by shift work."

Biologists in Kay's laboratory and the nearby Genomics Institute of the Novartis Research Foundation, led by Tsuyoshi Hirota, the first author of the paper, discovered longdaysin by screening thousands of compounds with a robot that tested the reaction of each compound with a line of human bone cancer cells that the researchers genetically modified so they could see visually the changes in the cells' circadian rhythms. This was done in the cells by attaching a clock gene to a luciferase gene used by fireflies to glow at night, so that the cells glowed when the biological clock was activated.

The robot screened more than 120,000 potential compounds from a chemical library into individual micro-titer wells—a system used by drug companies called high-throughput screening—and automatically singled out those found to have the biggest effects on the biological clock. Once Kay's group had isolated longdaysin, they turned to biological chemists in Peter Schultz's laboratory at The Scripps Research Institute to characterize the molecule and figure out how it lengthened the biological clock. That analysis showed that three separate protein kinases were responsible for the dramatic effect of longdaysin, one of which, CK1alpha, had previously been ignored by chronobiology researchers.

The researchers then showed that longdaysin had the same effect of lengthening the in mouse tissue samples and in zebrafish larvae that carried luciferase genes attached to their clock genes. Kay's research team plans to test longdaysin on mice in the near future, but their goal isn't to develop longdaysin into a drug. "Longdaysin is not as potent as we would like," he adds. "This will be a tool for research."

Explore further: Highly efficient CRISPR knock-in in mouse

More information: Hirota T, Lee JW, Lewis WG, Zhang EE, Breton G, et al. (2010) High-Throughput Chemical Screen Identifies a Novel Potent Modulator of Cellular Circadian Rhythms and Reveals CKIa as a Clock Regulatory Kinase. PLoS Biol 8(12): e1000559. doi:10.1371/journal.pbio.1000559

Related Stories

Clocking in and out of gene expression

Jun 14, 2007

A chemical signal acts as time clock in the expression of genes controlled by a master gene called a coactivator, said Baylor College of Medicine researchers in a report that appears in the journal Cell today.

Plant clock gene also works in human cells

Dec 01, 2010

A gene that controls part of the 'tick tock' in a plant's circadian clock has been identified by UC Davis researchers. And not only is the plant gene very similar to one in humans, but the human gene can work in plant cells ...

Recommended for you

Highly efficient CRISPR knock-in in mouse

May 01, 2015

Genome editing using CRISPR/Cas system has enabled direct modification of the mouse genome in fertilized mouse eggs, leading to rapid, convenient, and efficient one-step production of knockout mice without ...

Catalysing industrial change with marine-based enzymes

May 01, 2015

April 2015 saw the launch of an ambitious four-year EU project that hopes to unlock the immense potential of marine-sourced enzymes. The consortium behind INMARE (Industrial Applications of Marine Enzymes: Innovative screening ...

Africa explores cassava potential

Apr 30, 2015

Cassava is a crop that is crucial to food security for millions of Africans but now some countries on the continent are considering the potential of the shrub for industrial purposes, says Wits Professor ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.