A New class for Tau Scorpii

Dec 22, 2010 By Jon Voisey, Universe Today

Many classes of stars are named for an early, distinguished member of a certain type of stars. For example, Cepheid variables take their namesake from the periodic variable Delta Cephei, first recognized by John Goodricke, although Eta Aquillae, another Cepheid, was recognized as a periodic variable with the same period just before Delta Cephei. Since the time of Goodricke’s discovery, many more classes of objects have been discovered from T Tauri, to W Ursa Majoris, to Delta Scorpii.

But sometimes, stars must wait before more members of their class are discovered. Tau Scorpiiis a massive B0 star and one of the rare high mass stars for which magnetic fields have been measured. To distinguish it even further, studies have shown that its is unusually complex, being much more tangled than most stars and not showing distinct dipoles. Additionally, this unusual star has been shown to have weaker stellar winds (and consequently, mass loss rates) than most B0 type stars, as well as spectral features that are simultaneously characteristic of stars on the main sequence and young giants. Meanwhile, the star is believed to be only a few million years old. A first step towards characterizing such odd objects is to find more. Fortunately, astronomers have discovered two more stars similar to Tau Scorpii.

The two new stars, HD 66665 and HD 63425, were first recognized as unusual from their spectra, taken by the Canada-France-Hawaii Telescope. Using these spectra, the team, led by Véronique Petit at West Chester University, recognized that these stars had the same peculiar winds as Tau Scorpii. While Petit’s group could not completely constrain the mass loss rates, they did place an upper limit on both, establishing that they too shared the “weak wind problem” in which the expected mass loss rate for such stars was roughly 20 times higher. This prompted the team to investigate each star for magnetic fields.

Although the team wasn’t able to fully analyze the magnetic fields during their observing run to determine just how unusual they were, the team did establish both stars did have magnetic fields present and that they were similar in strength to that of Tau Scorpii. These two pieces of information has led the team to conclude that HD 66665 and HD 63425, along with Tau Scorpii, constitute a new class of stars. Additional confirmation could come from similar conclusions on the age of the analogues.

Petit’s team doesn’t speculate as to the nature of this emerging class in this paper. However, an earlier work of which Petit was a co-author, examined Tau Scorpii specifically. In it, the team examined whether the unusual field was a “frozen in” fossil from formation, or actively produced by an unusual dynamo inside the star. Fields produced by dynamos require large portions of the interior of the star undergoing convection. Models of massive stars predict that convection is likely to be limited in such stars. Another key component is rotation. Tau Scorpii is an extremely slow rotator, so the team concluded that a dynamo is unlikely in this case. As such, the fossil-field theory was more likely. Further investigation of HD 66665 and HD 63425 will certainly be necessary to further compare these to Tau Scorpii.

Explore further: Exomoons Could Be Abundant Sources Of Habitability

add to favorites email to friend print save as pdf

Related Stories

The Magnetic Nature of a Mysterious Cosmic X-ray Emitter

Jun 06, 2006

Our Sun has its explosive flares and spots and high speed wind, but it is a placid star compared to some. Stars that are much more massive live fast and die young, with blue-white, intensely hot surfaces that ...

Magnetic fields on O-Class stars

Dec 20, 2010

The primary method by which astronomers can measure magnetic field strength on stars is the Zeeman effect. This effect is the splitting of spectral lines into two due to the magnetic field's effect on the ...

Magnetic field on bright star Vega

Jun 23, 2009

Astronomy & Astrophysics journal publishes the first detection of a magnetic field on the bright star Vega. Using the NARVAL spectropolarimeter of the Bernard-Lyot telescope on top of the Pic du Midi (Franc ...

T-dwarf stars finally reveal their mysterious secrets

Nov 23, 2010

Astronomers have recently discovered an exotic star system which has shed some light on the mass and age of one of the systems rare stellar components. Using data from World’s largest optical telescope, ...

Signatures of the first stars

Apr 15, 2005

A primitive star with extremely low iron content has been discovered by an international research team from Sweden, Japan, Germany, USA, Australia and Great Britain. This indicates the original composition of the gas from ...

Recommended for you

Exomoons Could Be Abundant Sources Of Habitability

15 hours ago

With about 4,000 planet candidates from the Kepler Space Telescope data to analyze so far, astronomers are busy trying to figure out questions about habitability. What size planet could host life? How far ...

Partial solar eclipse over the U.S. on Thursday, Oct. 23

Oct 17, 2014

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

A newborn supernova every night

Oct 17, 2014

Thanks to a $9 million grant from the National Science Foundation and matching funds from the Zwicky Transient Facility (ZTF) collaboration, a new camera is being built at Caltech's Palomar Observatory that ...

User comments : 0