Using chaos to model geophysical phenomena

December 7, 2010
These two images show that the most "coherent set," the most nondispersive transport time from Sept. 1 to Sept. 14, is in fact the vortex itself over this domain -- demonstrating that the new technique very accurately pinpoints the polar vortex at specific times. Credit: American Institute of Physics

Geophysical phenomena such as the dynamics of the atmosphere and ocean circulation are typically modeled mathematically by tracking the motion of air or water particles. These mathematical models define velocity fields that, given (i) a position in three-dimensional space and (ii) a time instant, provide a speed and direction for a particle at that position and time instant.

"Geophysical phenomena are still not fully understood, especially in turbulent regimes," explains Gary Froyland at the School of Mathematics and Statistics and the Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems (MASCOS) at the University of New South Wales in Australia.

"Nevertheless, it is very important that scientists can quantify the 'transport' properties of these geophysical systems: Put very simply, how does a packet of air or water get from A to B, and how large are these packets? An example of one of these packets is the Antarctic polar vortex, a rotating mass of air in the stratosphere above Antarctica that traps chemicals such as ozone and chlorofluorocarbons (CFCs), exacerbating the effect of the CFCs on the ," Froyland says.

These two images show that the most "coherent set," the most nondispersive transport time from Sept. 1 to Sept. 14, is in fact the vortex itself over this domain -- demonstrating that the new technique very accurately pinpoints the polar vortex at specific times. Credit: American Institute of Physics

In the American Institute of Physics' journal CHAOS, Froyland and his research team, including colleague Adam Monahan from the School of Earth and Ocean Sciences at the University of Victoria in Canada, describe how they developed the first direct approach for identifying these packets, called "coherent sets" due to their nondispersive properties.

This technique is based on so-called "transfer operators," which represent a complete description of the ensemble evolution of the fluid. The transfer operator approach is very simple to implement, they say, requiring only singular vector computations of a matrix of transitions induced by the dynamics.

When tested using European Centre for Medium Range Weather Forecasting (ECMWF) data, they found that their new methodology was significantly better than existing technologies for identifying the location and transport properties of the vortex.

The transport operator methodology has myriad applications in atmospheric science and physical oceanography to discover the main transport pathways in the atmosphere and oceans, and to quantify the transport. "As atmosphere-ocean models continue to increase in resolution with improved computing power, the analysis and understanding of these models with techniques such as transfer operators must be undertaken beyond pure simulation," says Froyland.

Their next application will be the Agulhas rings off the South African coast, because the rings are responsible for a significant amount of transport of warm water and salt between the Indian and Atlantic Oceans.

Explore further: Hurricane intensity predictions take into account effect of large eddies on wind speed

More information: The article, "Transport in time-dependent dynamical systems: Finite-time coherent sets" by Gary Froyland, Naratip Santitissadeekorn, and Adam Monahan appears in the journal CHAOS. See: link.aip.org/link/chaoeh/v20/i4/p043116/s1

Related Stories

Study Finds Clock Ticking Slower On Ozone Hole Recovery

June 30, 2006

The Antarctic ozone hole's recovery is running late. According to a new NASA study, the full return of the protective ozone over the South Pole will take nearly 20 years longer than scientists previously expected.

2008 ozone hole larger than last year

October 7, 2008

The 2008 ozone hole – a thinning in the ozone layer over Antarctica – is larger both in size and ozone loss than 2007 but is not as large as 2006.

Recommended for you

Quantum matter stuck in unrest

July 31, 2015

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

Researchers build bacteria's photosynthetic engine

July 29, 2015

Nearly all life on Earth depends on photosynthesis, the conversion of light energy into chemical energy. Oxygen-producing plants and cyanobacteria perfected this process 2.7 billion years ago. But the first photosynthetic ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

geokstr
3 / 5 (2) Dec 07, 2010
Geophysical phenomena are still not fully understood...

Lies, I tell you, lies.

The debate is over, the consensus has been reached, 100% of the evidence is in and it is totally undisputed by every intelligent human being not in thrall to Exxon and Cheney. There is no longer any doubt left whatsoever that we need to radically restructure and impoverish our civilization under the watchful and beneficent hand of St. Algore and his acolytes, or we suffer the fate of Venus by next Tuesday.

Gaia be with you.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.