Using chaos to model geophysical phenomena

Dec 07, 2010
These two images show that the most "coherent set," the most nondispersive transport time from Sept. 1 to Sept. 14, is in fact the vortex itself over this domain -- demonstrating that the new technique very accurately pinpoints the polar vortex at specific times. Credit: American Institute of Physics

Geophysical phenomena such as the dynamics of the atmosphere and ocean circulation are typically modeled mathematically by tracking the motion of air or water particles. These mathematical models define velocity fields that, given (i) a position in three-dimensional space and (ii) a time instant, provide a speed and direction for a particle at that position and time instant.

"Geophysical phenomena are still not fully understood, especially in turbulent regimes," explains Gary Froyland at the School of Mathematics and Statistics and the Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems (MASCOS) at the University of New South Wales in Australia.

"Nevertheless, it is very important that scientists can quantify the 'transport' properties of these geophysical systems: Put very simply, how does a packet of air or water get from A to B, and how large are these packets? An example of one of these packets is the Antarctic polar vortex, a rotating mass of air in the stratosphere above Antarctica that traps chemicals such as ozone and chlorofluorocarbons (CFCs), exacerbating the effect of the CFCs on the ," Froyland says.

These two images show that the most "coherent set," the most nondispersive transport time from Sept. 1 to Sept. 14, is in fact the vortex itself over this domain -- demonstrating that the new technique very accurately pinpoints the polar vortex at specific times. Credit: American Institute of Physics

In the American Institute of Physics' journal CHAOS, Froyland and his research team, including colleague Adam Monahan from the School of Earth and Ocean Sciences at the University of Victoria in Canada, describe how they developed the first direct approach for identifying these packets, called "coherent sets" due to their nondispersive properties.

This technique is based on so-called "transfer operators," which represent a complete description of the ensemble evolution of the fluid. The transfer operator approach is very simple to implement, they say, requiring only singular vector computations of a matrix of transitions induced by the dynamics.

When tested using European Centre for Medium Range Weather Forecasting (ECMWF) data, they found that their new methodology was significantly better than existing technologies for identifying the location and transport properties of the vortex.

The transport operator methodology has myriad applications in atmospheric science and physical oceanography to discover the main transport pathways in the atmosphere and oceans, and to quantify the transport. "As atmosphere-ocean models continue to increase in resolution with improved computing power, the analysis and understanding of these models with techniques such as transfer operators must be undertaken beyond pure simulation," says Froyland.

Their next application will be the Agulhas rings off the South African coast, because the rings are responsible for a significant amount of transport of warm water and salt between the Indian and Atlantic Oceans.

Explore further: And so they beat on, flagella against the cantilever

More information: The article, "Transport in time-dependent dynamical systems: Finite-time coherent sets" by Gary Froyland, Naratip Santitissadeekorn, and Adam Monahan appears in the journal CHAOS. See: link.aip.org/link/chaoeh/v20/i4/p043116/s1

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

2008 ozone hole larger than last year

Oct 07, 2008

The 2008 ozone hole – a thinning in the ozone layer over Antarctica – is larger both in size and ozone loss than 2007 but is not as large as 2006.

Study Finds Clock Ticking Slower On Ozone Hole Recovery

Jun 30, 2006

The Antarctic ozone hole's recovery is running late. According to a new NASA study, the full return of the protective ozone over the South Pole will take nearly 20 years longer than scientists previously expected.

Recommended for you

And so they beat on, flagella against the cantilever

21 hours ago

A team of researchers at Boston University and Stanford University School of Medicine has developed a new model to study the motion patterns of bacteria in real time and to determine how these motions relate ...

Tandem microwave destroys hazmat, disinfects

Sep 16, 2014

Dangerous materials can be destroyed, bacteria spores can be disinfected, and information can be collected that reveals the country of origin of radiological isotopes - all of this due to a commercial microwave ...

Cornell theorists continue the search for supersymmetry

Sep 16, 2014

(Phys.org) —It was a breakthrough with profound implications for the world as we know it: the Higgs boson, the elementary particle that gives all other particles their mass, discovered at the Large Hadron ...

How did evolution optimize circadian clocks?

Sep 12, 2014

(Phys.org) —From cyanobacteria to humans, many terrestrial species have acquired circadian rhythms that adapt to sunlight in order to increase survival rates. Studies have shown that the circadian clocks ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

geokstr
3 / 5 (2) Dec 07, 2010
Geophysical phenomena are still not fully understood...

Lies, I tell you, lies.

The debate is over, the consensus has been reached, 100% of the evidence is in and it is totally undisputed by every intelligent human being not in thrall to Exxon and Cheney. There is no longer any doubt left whatsoever that we need to radically restructure and impoverish our civilization under the watchful and beneficent hand of St. Algore and his acolytes, or we suffer the fate of Venus by next Tuesday.

Gaia be with you.