Cells 'feel' the difference between stiff or soft and thick or thin matrix

Dec 13, 2010

Cultured mesenchymal stem cells can "feel" at least several microns below the surface of an artificial microfilm matrix, gauging the elasticity of the extracellular bedding that is a crucial variable in determining their fate, researchers reported today at the American Society for Cell Biology's 50th Annual Meeting in Philadelphia.

Controlling or predicting how stem cells differentiate into cells of a specific tissue type is a critical issue in the of artificial tissue and in stem cell medicine.

To determine how deep a cell's sense of touch can reach, University of Pennsylvania researchers placed naive (MSCs) on microfilm matrices controlled for thickness and elasticity and bonded to rigid glass.

Amnon Buxboim, Ph.D., of the University of Pennsylvania and colleagues constructed these artificial bedding surfaces to mimic the extracellular matrix that stem cells "feel" as they differentiate.

They used naive MSCs as prototypical adherent cells, because they are particularly sensitive to micro-environmental factors such as elasticity or hardness as they differentiate.

By a variety of measures, the researchers concluded that MSCs can "feel" to several microns into compliant matrices. The stiffer the surface, the shallower the cells could feel; the softer the surface, the deeper they could "feel."

Because the matrices varied, the scientists were able to document significant differences between stem cells grown on varying stiffness and thickness that represent human tissue microenvironments ⎯ such as brain tissue, which is softer than muscle, which is softer than cartilage, which is softer than pre-calcified bone.

In previous studies, the researchers discovered that as tissue cells adhered to a soft natural , they pulled and deformed the surface, actions that allowed the cells to use their sense of touch below the surface.

To determine how the thickness and stiffness of the microfilm affected the form of cells grown on top, they deployed a range of methods to document significant differences between grown on thin films versus thick films.

Cell shape was measured by confocal microscopy and micro-elasticity by atomic force microscopy. Cellular responses were analyzed in terms of morphology while cytoskeletal organization was mapped using non-muscle myosin assembly. Changes in gene expression were obtained by DNA microarray-based transcriptional analysis of the genome.

Explore further: Structure of world's largest single cell is reflected at the molecular level

Provided by American Society for Cell Biology

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Physical environment influences stem cell development

Sep 07, 2010

A researcher at the Hebrew University of Jerusalem, together with Israeli and foreign collaborators, has revealed how physical qualities -- and not only chemical ones - may have an influence in determining how adult stem ...

Recommended for you

In a role reversal, RNAs proofread themselves

14 hours ago

Building a protein is a lot like a game of telephone: information is passed along from one messenger to another, creating the potential for errors every step of the way. There are separate, specialized enzymatic ...

Growing functioning brain tissue in 3D

17 hours ago

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

Understanding cellular ageing

17 hours ago

Researchers at the BBSRC-supported Babraham Institute have mapped the physical structure of the nuclear landscape in unprecedented detail to understand changes in genomic interactions occurring in cell senescence and ageing. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.