Because of the canine genome, human genetic diseases better understood

Dec 10, 2010

A dog is mankind's best friend: the old saying has once again been borne out through a medical discovery concerning the genetic origins of primary ciliary dyskinesia (PCD). In using dogs as a research model in the framework of the European LUPA project, a team from the University of Liege's GIGA-Research Unit has been able to bring to light new mutations in a specific gene responsible for the development of the disease in human beings.

Primary ciliary dyskinesia (PCD) is a which affects one person in 20,000. The disease is characterised by motility defects in cellular micro-cilia. The flapping of these micro-cilia allows micro-organisms contained in the air to be expelled. PCD hinders this flapping and is at the root of chronic respiratory infections.

Several mutations in some dozen or so genes are responsible for the development of this disease, but they do not explain 60% of the cases in human beings. To try and resolve these cases the researchers brought their investigations to bear on...dogs.

In effect dogs and humans suffer from numerous diseases in common which very probably have the same genetic origin (cardiac disorders, epilepsy, cancer, diabetes, etc.). A recent trend in biomedical research is to use dogs which are ill as a subject for study in order to detect the genes which could also be involved in the same disease occurring in human beings.

The researchers at the GIGA-ULg Unit and their international colleagues followed this very logic in investigating PCD.

Several Old English Sheepdog (bobtail) puppies suffering from were examined in 2007 at the ULg's Faculty of Veterinary Medicine. The frequency of this complaint in this breed suggested a genetic origin and raised suspicions of a PCD, a conviction which was strengthened by the fact that one of the dogs had a situs inversus, in other words a reversal of the heart's normal position in the thoracic cage. During the embryo stage it is one of the functions of some hair cells to create a flow which enables organs to be correctly positioned; if this flow does not take place there is a risk that an organ's normal position will be reversed.

The researchers analysed the DNA of five ill bobtails brought in for consultation at the veterinary clinic and compared it to that of 15 other healthy bobtails. The analysis of this DNA, with the help of 40,000 genetic markers, enabled the identification of a region of canine chromosome 34 linked to the disease, and more particularly a mutation within gene CDC39.

"We were thus able to identify 15 different mutations of this disease," explains Anne-Christine Merveille, a researcher in Professor Michel Georges team at the GIGA-ULg Unit. "These mutations explain half of the cases analysed, or close to 5% of the patients throughout the world who are suffering from this disease."

The study illustrates well the usefulness of dogs for a rapid decrypting of complex human genetic diseases. ‘The demonstration of this gene's responsibility in this pathology will enable the families affected to be better advised,' adds Doctor Anne-Sophie Lequarré, in charge of the LUPA project.

Explore further: Age of puberty in girls influenced by which parent their genes are inherited from

More information: CCDC39 is required for assembly of inner dynein arms and the dynein regulatory complex and for normal ciliary motility in humans and dogs", Nature Genetics, Advance Online Publication, 05/12/2010. www.nature.com/ng/journal/vaop… ent/full/ng.726.html

Provided by University of Liege

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Man's best friend recruited in the hunt for disease genes

Oct 16, 2008

For centuries man has had a uniquely close relationship with dogs – as a working animal, for security and, perhaps most importantly, for companionship. Now, dogs are taking on a new role – they are helping in the hunt ...

Canine genome is studied in Britain

Jul 12, 2005

Some dog breeds are more susceptible to particular diseases than others and British scientists want to identify their genetic predisposition.

Recommended for you

Schizophrenia's genetic architecture revealed (w/ Video)

18 hours ago

Queensland scientists are closer to effective treatments for schizophrenia after uncovering dozens of sites across the human genome that are strongly associated with a genetic predisposition to schizophrenia.

Mysterious esophagus disease is autoimmune after all

Jul 22, 2014

(Medical Xpress)—Achalasia is a rare disease – it affects 1 in 100,000 people – characterized by a loss of nerve cells in the esophageal wall. While its cause remains unknown, a new study by a team of researchers at ...

Diagnostic criteria for Christianson Syndrome

Jul 21, 2014

Because the severe autism-like condition Christianson Syndrome was only first reported in 1999 and some symptoms take more than a decade to appear, families and doctors urgently need fundamental information ...

User comments : 0