Researchers discover new way to reduce anxiety, stress

Dec 17, 2010 By Raquel Maurier

Two North American researchers have made a major discovery that will benefit people who have anxiety disorders. Bill Colmers, a professor of pharmacology and researcher in the Faculty of Medicine & Dentistry at the University of Alberta, collaborated with Janice Urban, an associate professor in the department of physiology and biophysics at the Chicago Medical School at Rosalind Franklin University of Medicine and Science. The duo, who have been researching anxiety for five years, discovered that blocking a process in nerve cells reduces anxiety, meaning a new drug could now be developed to better treat anxiety disorders. Their findings were published in the peer-reviewed Journal of Neuroscience in December’s edition.

Colmers explained that current anxiety drugs on the market are non-selective, which means they inhibit various neurons, or nerve cells, in the brain—including ones you don’t want to inhibit. Because no one could pinpoint how to reduce anxiety, all kinds of neurons had to be treated with anxiety medication, which can have undesirable side-effects such as drowsiness.

But now drugs can now be designed to more specifically treat anxiety disorders, likely meaning fewer undesirable side effects and a better quality of life for those with anxiety. Anxiety disorders are the most common mental-health issue in the country, affecting one in 10 Canadian adults, according to the Anxiety Disorders Association of Canada.

For years, researchers have understood what processes in the brain are responsible for high and low anxiety levels, but no one had been able to identify what triggers this process.

“No one else has discovered this,” said Colmers, a senior scientist with funding from the Alberta Heritage Foundation for Medical Research (a provincial agency now called Alberta Innovates – Health Solutions). “Others have identified the behaviour, but now we know why this process happens and how it works. Now we know why certain chemical messengers behave the way they do.”

There are two chemical messengers in a specific part of the brain known to regulate anxiety. One messenger, known as neuropeptide Y, makes one less anxious while the other, known as corticotropin-releasing factor or CRF, makes one more anxious.

These two chemical messengers regulate how “excitable” the nerve cell gets. Neuropeptide Y causes to be less active, meaning the cells will fire less. The other chemical messenger, CRF, causes cells to be more active and fire more often. The more often these neurons fire, the more anxious a person becomes.

By working with laboratory models, Colmers and Urban discovered that blocking the process responsible for regulating cell excitability triggers less anxiety. Blocking this process had the same effect as the chemical messenger neuropeptide Y, which makes people less anxious.

Colmers said it could be 10 years before patients could start taking a new drug for anxiety based on these research findings, but the find is still significant.

“There is a real need to find better treatments for anxiety—to better target the processes in the brain that trigger .”

Explore further: New study aimed at diminishing phantom pain suffered by amputees

Related Stories

Genetic predisposition may play a role in anxiety disorders

Aug 27, 2008

Finnish scientists have identified genes that may predispose to anxiety disorders. Research conducted under the supervision of Academy Research Fellow Iiris Hovatta have focused on genes that influence human behaviour, and ...

Nervous mice lead researchers to regulator of anxiety

Jan 25, 2007

University of Toronto researchers have uncovered a protein in brain receptors that regulates anxiety in mice - a finding that could one day lead to new clinical treatments of pathological anxiety in humans.

Recommended for you

Team makes breakthrough in understanding Canavan disease

7 hours ago

UC Davis investigators have settled a long-standing controversy surrounding the molecular basis of an inherited disorder that historically affected Ashkenazi Jews from Eastern Europe but now also arises in other populations ...

Finding the body clock's molecular reset button

10 hours ago

An international team of scientists has discovered what amounts to a molecular reset button for our internal body clock. Their findings reveal a potential target to treat a range of disorders, from sleep ...

A 'GPS' to navigate the brain's neuronal networks

11 hours ago

In new research published today by Nature Methods, scientists from the Hebrew University of Jerusalem and Harvard University have announced a "Neuronal Positioning System" (NPS) that maps the circuitry of the ...

Neurons constantly rewrite their DNA

11 hours ago

Johns Hopkins scientists have discovered that neurons are risk takers: They use minor "DNA surgeries" to toggle their activity levels all day, every day. Since these activity levels are important in learning, ...

Hate to diet? It's how we are wired

11 hours ago

If you're finding it difficult to stick to a weight-loss diet, scientists at the Howard Hughes Medical Institute's Janelia Research Campus say you can likely blame hunger-sensitive cells in your brain known ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.