Air force flight control improvements may result from flying insect research

Dec 06, 2010 By Maria Callier
Flight control improvements may result from flying insect research
Virtual reality tunnel for fruit flies allows simultaneous tracking of freely flying flies and computer projected imagery on the walls and floor of the arena. (Credit: Dr. Andrew Straw, Caltech).

Flying insects' altitude control mechanisms are the focus of research being conducted in a Caltech laboratory under an Air Force Office of Scientific Research grant that may lead to technology that controls altitude in a variety of aircraft for the Air Force.

"This work investigates sensory-motor feedback mechanisms in the insect brain that could inspire new approaches to flight stabilization and navigation in future insect-sized vehicles for the military," said Dr. Willard Larkin, AFOSR program manager who's supporting the work of lead researcher, Dr. Andrew Straw of Caltech.

The research is being conducted in a laboratory where scientists are studying how flies use to guide flight in natural environments.

The scientists have found that, counter to earlier studies suggesting that insects adjust their height by measuring the motion beneath them as they fly, flies in fact follow horizontal edges of objects to regulate altitude. Remarkably, this edge following behavior is very similar to a rule they use for steering left and right and always turning towards vertical edges.

Straw noted that the flies don't have access to GPS or other that may also be unavailable in, for example, indoor environments.

"However, with a tiny brain they are able to perform a variety of tasks such as finding food and mates despite changing light levels, wind gusts, wing damage, and so on," he said. "Flies rely heavily on vision."

The scientists designed a for their flying subjects which they found could regulate their altitude by enabling them to fly at the height of nearby horizontal visual, like the tops of rocks and vegetation.

"We developed a 3D fly tracking system which was our most significant technical challenge: localizing a fly in 3D nearly instantaneously," said Straw. "Next, we developed visual stimulus software capable of making use of this information to project virtual edges and textured floors in which we could modify the fly's sensory-motor feedback mechanism."

The 3D fly tracking system the researchers developed is significant because it will allow a rapid characterization of other fly behaviors with unprecedented levels of control.

Ultimately the scientists would like to build models of fly flight that can accurately predict behavior based on their sensory input and internal states.

"Additionally, being able to identify the neural circuits responsible for flight control would allow us to extend our understanding of how physiological processes implement behavior," said Straw.

In their next phase, the scientists will study more sophisticated flight behaviors, asking if the the fly creates a long-lasting neural representation of its visual surroundings or whether flight is only controlled by fast-acting reflexes.

Explore further: Pigeons and people play the odds when rewards are higher

Provided by Air Force Office of Scientific Research

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

How flies set their cruising altitude

Aug 19, 2010

Insects in flight must somehow calculate and control their height above the ground, and researchers reporting online on August 19 in Current Biology, have new insight into how fruit flies do it. The answer ...

Micro flying robots can fly more effectively than flies

Aug 01, 2009

There is a long held belief among engineers and biologists that micro flying robots that fly like airplanes and helicopters consume much more energy than micro robots that fly like flies. A new study now shows ...

Recommended for you

Secret wing colours attract female fruit flies

9 hours ago

Bright colours appear on a fruit fly's transparent wings against a dark background as a result of light refraction. Researchers from Lund University in Sweden have now demonstrated that females choose a mate ...

Pigeons and people play the odds when rewards are higher

12 hours ago

(Phys.org) —If you were weighing the risks, would you choose to receive a guaranteed $100, or take a 50/50 chance of winning either $200 or nothing? Researchers at the University of Alberta have shown that ...

User comments : 0