Unexpectedly small effects of mutations in bacteria bring new perspectives

Nov 05, 2010

Most mutations in the genes of the Salmonella bacterium have a surprisingly small negative impact on bacterial fitness. And this is the case regardless whether they lead to changes in the bacterial proteins or not. This is shown by Uppsala University scientists in an article being published today in the prestigious journal Science.

The researchers have examined the impact of on the rate of growth of the Salmonella bacterium and show that most mutations have generally very small effects. Moreover the negative effects are of the similar magnitude for changes that lead to substitution of amino acids in proteins (so-called non-synonymous mutations) as for mutations that do not change the protein sequence (so-called synonymous mutations).

"The findings open an entirely new chapter for experimental studies of mutations and show that we need to change our view of how mutations lead to negative effects," says Professor Dan Andersson, lead author of the study.

A central question in , medical genetics, species-conservation biology, and animal breeding is how and why mutations affect an organism's capacity to survive. Usually these questions are studied in DNA sequence analyses from which conclusions have been drawn about what mutations are most common and have become established in the DNA of the organism.

The Uppsala scientists have used another -- experimental -- method whereby they can use various genetic tricks to introduce random individual mutations into any chosen gene, a method that has previously been used primarily in viruses. Two genes that code for proteins that are included in ribosomes were mutated, and using extremely sensitive growth measurements, doctoral candidate Peter Lind showed that most mutations reduced the rate of growth of bacteria by only 0.500 percent. No mutations completely disabled the function of the proteins, and very few had no impact at all.

Even more surprising was the fact that mutations that do not change the sequence had negative effects similar to those of mutations that led to substitution of . A possible explanation is that most mutations may have their negative effect by altering mRNA structure, not proteins, as is commonly assumed.

Explore further: Environmental pollutants make worms susceptible to cold

Related Stories

New gene linked to muscular dystrophy

Aug 10, 2009

Muscular dystrophy, a group of inherited diseases characterized by progressive skeletal muscle weakness, can be caused by mutations in any one of a number of genes. Another gene can now be added to this list, as Yukiko Hayashi ...

Study questions 'cost of complexity' in evolution

Mar 31, 2008

Higher organisms do not have a “cost of complexity” — or slowdown in the evolution of complex traits — according to a report by researchers at Yale and Washington University in Nature.

Cornell Finds Natural Selection in Humans

Oct 26, 2005

The most detailed analysis to date of how humans differ from one another at the DNA level shows strong evidence that natural selection has shaped the recent evolution of our species, according to researchers from Cornell ...

Recommended for you

Environmental pollutants make worms susceptible to cold

7 minutes ago

Some pollutants are more harmful in a cold climate than in a hot, because they affect the temperature sensitivity of certain organisms. Now researchers from Danish universities have demonstrated how this ...

A new quality control pathway in the cell

19 hours ago

Proteins are important building blocks in our cells and each cell contains millions of different protein molecules. They are involved in everything from structural to regulatory aspects in the cell. Proteins are constructed ...

User comments : 0