Navigating underwater using spiral sound

Nov 17, 2010
Experimental Setup

With the increased use of underwater robotics in both Navy and commercial applications, underwater navigation becomes more and more important. As researchers attempt to make these vehicles smaller and less expensive, simple systems for the navigation of multiple vehicles become important. A research team from Naval Research Laboratory, the University of Washington, and Naval Surface Warfare Center has developed and tested an underwater navigation system that uses a spiral shaped acoustic wave to determine aspect. The single stationary beacon can provide a navigation signal for any number of underwater vehicles.

Navigation by the satellite (GPS) has become ubiquitous in modern life. Many people have them in our cars and even in our cell phones. These systems can be accurate to within a few meters. Differential GPS (DGPS), which uses a fixed antenna as a reference, can be accurate to within a centimeter. Unfortunately, GPS signals cannot penetrate the water's surface. Thus, various acoustic and inertial techniques have been developed for underwater navigation. Inertial techniques include accelerometers, like those popular in gaming consoles and gyroscopic compasses that can determine position by judging how the vehicle is moving relative to the earth. One acoustic technique available is known as "long-baseline", which uses the distances to fixed sound sources, determined from the time it takes the sound to reach the receiver, to triangulate to the receiver's position. Another popular acoustic technique called "ultra-short baseline" navigation measures the arrival of a single incoming signal using several hydrophones (underwater microphones) positioned on the same vehicle.

The research team's navigation technique differs from the baseline techniques because the signal coming out of the beacon itself varies with aspect, thus only a single hydrophone is required. Consider the pattern of concentric circles made on the surface of a pond after a pebble is tossed in. Each of these peaks and troughs are known as wave fronts and they travel out from a central source at a fixed speed. Under the water's surface, sound waves can easily be made to form circular wave fronts, analogous to the pebble in the pond. The research team developed ways to produce sound with another type of wave front, a spiral wave front, where, instead of concentric circles, there is one continuous spiral shaped line emanating from the source.

These can be stacked with two sources on top of one another to make a navigational beacon. When the team transmited from both sources at the same time, the signal looks like this. The distance between the circular and spiral wave fronts does not change along a particular direction. Thus, if a hydrophone is placed at some position around the beacon, researchers could determine the aspect angle to the beacon by comparing the arrival of the different wave fronts. This navigation technique is also used by aircraft navigation and is called VOR (VHF Omnidirectional Range). However, VOR uses radio signals rather than sound waves.

Based on this concept, the research team had a beacon built by Thomas Howarth at the Naval Undersea Warfare Center in Newport, Rhode Island. To test the accuracy of the beacon, it was attached it to a dock on a pond about 3 meters below the water's surface at the Naval Surface Warfare Center in Panama City, Florida. A remote controlled (RC) pontoon boat was equipped with a hydrophone below the water's surface to determine aspect from the spiral wave front beacon and a GPS antenna above the surface to determine aspect using DGPS (see figure Experimental Setup). The RC boat was driven around a pond and compared the aspect determination from the spiral wave front beacon to the DGPS result. Using the DGPS data the team was able to put the results into a movie showing the position of the RC boat and using arrows to depict the aspect to the beacon using both the spiral wave front beacon results and the GPS results. Although not as good as the DGPS results, the results were quite accurate giving an error between 5 and 15 degrees across all of the data. The team also tested several different signal processing schemes, some of which worked better in different conditions than others.

This video is not supported by your browser at this time.
Navigation Movie

The biggest advantage of this system over more traditional baseline techniques is simplicity. A single stationary beacon can be used to navigate any number of remote . The remote vehicles need only have a single available, and can even repurpose one from its sonar or acoustic communications system. With future visions of swarms of underwater vehicles, this can be a huge advantage.

The research team consists of Benjamin Dzikowicz, NRL's Acousitcs Division; Brian Hefner, University of Washington, Applied Physics Laboratory; and Robert Leasko, Naval Surface Warfare Center, Panama City, Florida. The Office of Naval Research provided funding for this research.

Explore further: PsiKick's batteryless sensors poised for coming 'Internet of things'

add to favorites email to friend print save as pdf

Related Stories

Lasers generate underwater sound

Sep 04, 2009

Scientists at the Naval Research Laboratory (NRL) are developing a new technology for use in underwater acoustics. The new technology uses flashes of laser light to remotely create underwater sound. The new ...

Galileo to support global search and rescue

Aug 09, 2007

The detection of emergency beacons will be greatly improved by the introduction of Europe's satellite positioning system, Galileo. The Galileo satellites will carry transponders to relay distress signals to ...

Digital avalanche rescue dog

Dec 01, 2009

(PhysOrg.com) -- A novel geolocation system makes use of signals from Galileo, the future European satellite navigation system, to locate avalanche victims carrying an avalanche transceiver or a cellphone, to the precision ...

Kayaks adapted to test marine robotics

Aug 07, 2006

MIT researchers are working toward the day when a team of robots could be put into action like a team of Navy SEALs - doing such dangerous work as searching for survivors after devastating hurricanes or sweeping ...

Recommended for you

Large streams of data warn cars, banks and oil drillers

Apr 16, 2014

Better warning systems that alert motorists to a collision, make banks aware of the risk of losses on bad customers, and tell oil companies about potential problems with new drilling. This is the aim of AMIDST, the EU project ...

User comments : 0

More news stories

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...