Stanford students fly in zero gravity to protect satellites from tiny meteoroids (w/ Video)

Nov 19, 2010 BY LOUIS BERGERON
Graduate students Nicolas Lee, left, and Shandor Dektor, during one of their 37 deployment tests on the zero gravity airplane.

(PhysOrg.com) -- Stanford researchers have completed the first successful tests in zero gravity of a canopy for CubeSats – the tiny satellites that hitch rides on rockets sending larger satellites into orbit. The goal is to gather data on what happens when micrometeoroids slam into a satellite. Such impacts often knock out electronic equipment on satellites. The encounters are poorly understood, but the canopies could be a first step in eventually building "black boxes" for satellites similar to airplane flight recorders.

Orbiting the Earth is risky business for a satellite. Over a hundred billion meteoroids enter Earth's atmosphere every day, and while big, fierce, spacecraft-crushing meteoroids are rare, even the tiniest ones are a hazard.

What happens when a really tiny meteoroid (so small a stack of 500 would stand less than an inch tall) hits a satellite is not fully understood, but Stanford researchers have successfully done preliminary testing of a device that may help shed light on these collisions in space.

Some of that testing was in , aboard a diving airplane flying over the ocean.

Nicolas Lee, a graduate student in aeronautics and astronautics, and several colleagues have designed a canopy to pop out of a tiny satellite called a CubeSat and absorb the impacts of these micrometeoroids, also known as "interplanetary flyspecks."

"The canopy might eventually be deployed to protect a spacecraft from meteoroids or shield it from the sun, but for now, we just want it to get hit," Lee said.

Even tiny meteoroids travel at tremendous speeds in orbit around the sun (more than 250,000 kilometers per hour) and pack a hefty punch when they strike a spacecraft.

"It is pretty much an explosion," Lee said.

Since the impact disrupts the satellite's electronics, no one knows exactly how the micrometeoroid causes the damage. But Lee's advisor, Sigrid Close, assistant professor of aeronautics and astronautics, has a theory.

She suspects the meteoroid instantly vaporizes into free electrons and ions that float around in a little ball. As that ball expands in the vacuum of space, it gives off energy at radio frequencies that interfere with the electronic equipment on the , disrupting communications and other essential functions.

This video is not supported by your browser at this time.
Flying in a plane over Texas performing a maneuver that produces weightlessness, Stanford researchers test devices to protect spacecraft.

"We want to fly a dedicated mission that can study this effect and make sure that we can protect against it," Lee said. For that mission, the team would work with Andrew Kalman, a consulting professor of aeronautics and astronautics, to equip a CubeSat with plasma sensors and radio antennas to measure radio frequency emissions.

As a first step in field-testing their canopy, Lee and fellow graduate students Shandor Dektor and Joseph Johnson recently tested their canopies in zero gravity aboard a NASA airplane flying over the Gulf of Mexico.

The plane flew a flight path any rollercoaster lover would die for: up and down in a series of parabolas, from about 22,000 to 32,000 feet. At the top of each parabola, the plane's occupants experienced weightlessness for about 20 seconds, which was when the team tested how their canopies opened. Over the course of two flights and 80 parabolas, the students did 37 successful trial runs.

Operating in zero gravity took some getting used to. "You don't realize gravity is gone so you are still pushing against it," Lee said. "And so you end up feeling like you are falling upwards."

The team tested three prototypes of the canopy, each a square meter in area. One design was thin mylar, rolled up in a spiral pattern inside the little black CubeSat box. Another design had the mylar folded to expand in a radial pattern. The third design used the spiral unfolding, but with a thicker membrane for the canopy. For all the designs, the unfolding was powered by struts made of common metal tape measures rolled up with the canopies.

The thin membrane rolled in a spiral pattern was the most successful. Lee thinks with proper folding, a thicker membrane could work well, too. Although Lee had some prior experience in origami, he said getting the proper folding was initially just trial and error.

"I folded so many prototypes," he said. But after figuring out the basic geometry of the folding, he developed a mathematical algorithm to employ.

"We are also hoping to deploy some metallic sheets, which might give us a different effect than the plastic mylar we've been using," he said. "For the purpose of a meteoroid impact screen, we would need a thicker membrane so the screen doesn't break when it gets hit by a large meteoroid."

When the CubeSat is deployed in space, in addition to zero gravity, it will have to open in a vacuum, so the researchers want to take their canopies into a vacuum chamber and shoot high velocity particles at it to supplement the zero gravity tests.

As the CubeSat canopy testing progresses, Close sees long-term potential not only in protecting satellites but also in recording what spacecraft experience in orbit.

"This could lead to devices that could be attached to satellites just like a black box in an airplane," Close said.

Explore further: Curiosity brushes 'Bonanza king' target anticipating fourth red planet rock drilling

Related Stories

Student-built satellite scheduled for launch

Sep 08, 2010

(PhysOrg.com) -- A 6.5-pound satellite is scheduled to become the first stand-alone spacecraft built by Michigan students to go into orbit and perform a science mission.

Student-built satellite selected for flight by NASA

Jan 27, 2010

A tiny communications satellite designed and built by University of Colorado at Boulder undergraduates has been selected as one of three university research satellites to be launched into orbit in November ...

Powering cube satellites

Feb 03, 2010

Right now, 10 to 15 Rubik's Cube-sized satellites are orbiting high above Earth. Known as cube satellites, or "CubeSats," the devices help researchers conduct simple space observations and measure characteristics ...

Mini MIT satellites rocketing to space station

Apr 25, 2006

A Russian rocket launched Monday, April 24, is carrying the first of three small, spherical satellites developed at MIT to the International Space Station -- a major step toward building space-based robotic ...

SSETI Express Sets Off

Jul 19, 2005

SSETI Express, the first spacecraft to be designed and built by European students, has set off on the first stage of its journey into space. It recently left ESTEC, in the Netherlands, and is now on its way to Plesetsk, ...

Recommended for you

Why NASA studies the ultraviolet sun

22 minutes ago

(Phys.org) —You cannot look at the sun without special filters, and the naked eye cannot perceive certain wavelengths of sunlight. Solar physicists must consequently rely on spacecraft that can observe ...

Two dynamos drive Jupiter's magnetic field

1 hour ago

(Phys.org) —Superlatives are the trademark of the planet Jupiter. The magnetic field at the top edge of the cloud surrounding the largest member of the solar system is around ten times stronger than Earth's, ...

GPIM spacecraft to validate use of "green" propellant

1 hour ago

(Phys.org) —Milestone progress is being made in readying NASA's Green Propellant Infusion Mission (GPIM) for launch in 2016, a smallsat designed to test the unique attributes of a high-performance, non-toxic, ...

Australian amateur Terry Lovejoy discovers new comet

22 hours ago

It's confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

rgwalther
not rated yet Nov 20, 2010
Really cool! They used off the shelf retracting, metallic, tape measures as uncurling spines.