Softening crystals without heat: Using terahertz pulses to manipulate molecular networks

Nov 09, 2010

As if borrowing from a scene in a science fiction movie, Japanese researchers at Kyoto University have successfully developed a kind of tractor beam that can be used to manipulate the network of the molecules. In a paper soon to be published in Physical Review Letters, the team has demonstrated a technique using terahertz pulses that could have broad applications in the chemical and pharmaceutical industries.

Terahertz waves, an area of specialty for the Koichiro Tanaka lab at Kyoto University's Institute for Integrated Cell-Material Sciences (iCeMS), exist in a frequency range beyond the infrared and before the microwave band. Also popularly referred to as , this form of radiation can pass through many materials but is non-ionizing, characteristics which make the waves useful in the imaging field.

In this case, intense terahertz pulses were used to successfully increase the amplitude of movement between amino-acid molecules in crystalline form, essentially softening the . Previous softening methods have always correspondingly raised the temperature, resulting in unwanted changes to the crystals' structure and properties.

"What we have demonstrated is that it is possible to use intense terahertz pulses to climb 20 ladder steps on the anharmonic intermolecular potential in the microcrystals," explains Dr. Masaya Nagai, an assistant professor at Kyoto University's Department of Physics and a coauthor of the paper. "This opens the door," he continues, "to the possibility of manipulating large molecules, thereby increasing understanding of the properties of molecular complexes such as proteins."

The team is expectant that the technique they have developed could eventually lead to advances in as well as in the refining of organic molecular crystals for pharmaceutical purposes.

Explore further: Chameleon crystals could enable active camouflage (w/ video)

More information: The article, "Ladder climbing on the anharmonic intermolecular potential in an amino acid microcrystal via an intense monocycle terahertz pulse" by Mukesh Jewariya, Masaya Nagai, and Koichiro Tanaka is scheduled to be published online on November 11, 2010 in Physical Review Letters.

Related Stories

Photons on the Half Shell

Aug 16, 2007

In the realm of ultra-fast science, there's a region where photons of light can be made to dance only half steps. Here, advances in laser science are letting researchers tinker with the behavior light in an ...

Team develops new metamaterial device

Feb 24, 2009

An engineered metamaterial proved it can function as a state-of-the-art device in the complex terahertz range of the electromagnetic spectrum, setting a standard of performance for modulating tiny waves of radiation, according ...

Terahertz-controlling device is built

Dec 04, 2006

U.S. government scientists say they've built a device that can manipulate terahertz radiation, perhaps leading to new imaging and communications devices.

Turning metal black more than just a novelty

Dec 08, 2009

(PhysOrg.com) -- University of Rochester optics professor Chunlei Guo made headlines in the past couple of years when he changed the color of everyday metals by scouring their surfaces with precise, high-intensity laser bursts.

Researchers mine the 'Terahertz gap'

Feb 04, 2008

Research underway at the University of Leeds will provide a completely fresh insight into the workings of nano-scale systems, and enable advances in the development of nano-electronic devices for use in industry, medicine ...

Recommended for you

How do liquid foams block sound?

17 hours ago

Liquid foams have a remarkable property: they completely block the transmission of sound over a wide range of frequencies. CNRS physicists working in collaboration with teams from Paris Diderot and Rennes ...

When things get glassy, molecules go fractal

20 hours ago

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

Vacuum ultraviolet lamp of the future created in Japan

Apr 22, 2014

A team of researchers in Japan has developed a solid-state lamp that emits high-energy ultraviolet (UV) light at the shortest wavelengths ever recorded for such a device, from 140 to 220 nanometers. This ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

When things get glassy, molecules go fractal

Colorful church windows, beads on a necklace and many of our favorite plastics share something in common—they all belong to a state of matter known as glasses. School children learn the difference between ...

A 'quantum leap' in encryption technology

Toshiba Research Europe, BT, ADVA Optical Networking and the National Physical Laboratory (NPL), the UK's National Measurement Institute, today announced the first successful trial of Quantum Key Distribution ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.