Scientists develop tool to trace metabolism of cancer-fighting tomato compounds

Nov 29, 2010

The University of Illinois scientists who linked eating tomatoes with a reduced risk of prostate cancer have developed a tool that will help them trace the metabolism of tomato carotenoids in the human body. And they've secured funding from the National Institutes of Health to do it.

"Scientists believe that carotenoids—the pigments that give the red, yellow, and orange colors to some fruits and vegetables -- provide the cancer-preventive benefits in , but we don't know exactly how it happens," said John W. Erdman, a U of I professor of human nutrition.

The researchers will use isotopic labeling of three tomato carotenoids with heavier carbon atoms than are commonly seen in nature, which will allow tracking of the tomato components' absorption and in the body, he said.

"We have two questions we'd like to answer. First, are the carotenoids themselves bioactive, or are their metabolic or oxidative products responsible for their benefits? Second, is lycopene alone responsible for the tomato's benefits, or are other carotenoids also important?" he said.

Previous Erdman animal studies have shown that whole tomato powder, which contains all of the fruit's nutritional components, is more effective against than lycopene alone.

"Lycopene, which gives the fruit its red color, has received a lot of attention—it's even advertised as an ingredient in multivitamin supplements, but two little-known colorless carotenoids, phytoene and phytofluene, probably also have benefits," said Nancy Engelmann, a doctoral student in Erdman's laboratory who helped to develop the new method.

Engelmann learned to optimize the amount of carotenoids in tomato cell cultures by treating already high-achieving tomato varieties with two plant enzyme blockers. The best performers were then chosen for culturing and carbon-13 labeling, she said.

The scientists grew tomato cells with non-radioactive carbon-13 sugars, yielding carbon molecules that are heavier than the 12-carbon molecules that exist elsewhere, Erdman said.

"These heavy carbon molecules are then incorporated into the in the tomato cell cultures. The result is that researchers will be able to track the activity of lycopene, phytoene, and phytofluene and their metabolites," he said.

Thanks to NIH funding, U of I researchers and colleagues at The Ohio State University are preparing to use this new tool to study carotenoid metabolism in humans.

"It's exciting that we now have the means to pull off this human study. It's work that should move us forward in the fight against prostate cancer," he said.

Explore further: Smoke flavourings and water vapour permeable bags for new fish smoking techniques

More information: The research was published in the September 2010 issue of the Journal of Agricultural and Food Chemistry.

add to favorites email to friend print save as pdf

Related Stories

Unique tomatoes tops in disease-fighting antioxidants

Feb 27, 2007

Deep red tomatoes get their rich color from lycopene, a disease-fighting antioxidant. A new study, however, suggests that a special variety of orange-colored tomatoes provide a different form of lycopene, one that our bodies ...

Recommended for you

Cells build 'cupboards' to store metals

20 hours ago

Lawrence Livermore researchers in conjunction with collaborators at University of California (link is external), Los Angeles have found that some cells build intracellular compartments that allow the cell ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.