Scientists imitate nature to engineer nanofilms

Nov 22, 2010 By Donna McKinney
a, Schematic of PPX nanofilm deposition by OAP. b, Electron microscope cross-section of PPX nanofilm (insets show top view and high-resolution cross-section micrographs). c, Picture of the anisotropic adhesive wetting surface with water drops. d, Water adhesion and release in three configurations of the nanofilm. Schematics illustrate the nanorod inclination at each tilt angle and correspond to photographs showing the anisotropic wetting behaviour of the nanofilm. (Credit: Nature Materials)

In nature, water striders can walk on water, butterflies can shed water from their wings, and plants can trap insects and pollen. Scientists at the Naval Research Laboratory are part of a research team working to engineer surfaces that imitate some of these water repellency features found in nature.

This technology offers the possibility of significant advances for producing new generations of coatings that will be of great value for military, medical, and energy applications. The research is published in the December 2010 issue of .

Dr. Walter Dressick from NRL, working with Professor Melik Demirel of Penn State and Dr. Matthew Hancock of MIT, have collaborated to create an engineered water-repellant thin film. What sets this development apart from earlier technologies is that this newest film has the ability to control the directionality of liquid transport.

In this system, parylene nanorods are deposited on the surface by a simple, straightforward method. The single step usually takes less than 60 minutes, compared with the more complex, multi-step lithography processes often used in previous systems. This is the first time this kind of surface has been engineered at the nanoscale.

In the newly created surface, the nanorods that form the film are smooth on a micron scale. This size and smoothness in the posts means that when droplets are placed on the surface, they move without being distorted in any way. Also, they can be moved without pumps or optical waves. Previous systems caused the to be distorted, which could rupture, spill, or destroy the cargo in the droplet when used in medical or microassembly applications. As they continue the research, the team will focus on optimizing the droplet transport mechanism and tuning the preparation method.

Looking to the future, researchers are hopeful that this film could be used as a coating on the hull of ships where it would reduce the drag and slow the fouling. In industry applications, the film might have uses in directional syringes and fluid diodes, pump-free digital fluidic devices, increased efficiency of thermal cooling for microchips, and tire coatings.

Explore further: Stressed out: Research sheds new light on why rechargeable batteries fail

Related Stories

Light-Driven Nanorod Could Roll on Water

Dec 18, 2009

(PhysOrg.com) -- In a recent study, researchers have examined the possibility of rolling a nanorod on the surface of water. On the macroscale, perhaps the closest analogy might be the sport of logrolling, ...

Driving water droplets uphill

Apr 02, 2008

Lab-on-a-chip technology could soon simplify a host of applications, thanks to a new way to move droplets up vertical surfaces on flexible chips.

Recommended for you

Nanoparticles give up forensic secrets

11 hours ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

Blades of grass inspire advance in organic solar cells

Sep 30, 2014

Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, an international research team led by Alejandro Briseno of the University of Massachusetts Amherst ...

How to make a "perfect" solar absorber

Sep 29, 2014

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material's spectrum of absorption just right: It should absorb virtually all wavelengths of light that ...

User comments : 0