Scientists identify one cause of damage in Alzheimer's disease, find a way to stop it

Nov 09, 2010
Clear strands of toxic aggregated amyloid beta peptides, a hallmark of Alzheimer's disease, interact with proteins such as the anti-oxidant enzyme catalase, shown in red. The interaction disables catalase, resulting in oxidative damage to neural cells in culture. Protein-resistant coating (blue) on the aggregated amyloids inhibit these harmful interactions and protect of cells from amyloid beta-induced oxidative stress and toxicity. Credit: Christopher Burke for UC San Diego

Researchers suspect that a protein superstructure called amyloid beta is responsible for much of the neural damage of Alzheimer's disease.

A new study at the University of California, San Diego, shows that amyloid beta disrupts one of the brain's anti-oxidant proteins and demonstrates a way to protect that , and perhaps others, from amyloid's harmful effects.

"Amyloid seems to cause damage to cells," said chemistry professor Jerry Yang. "We have reported in a very detailed way one potential interaction of how amyloid can cause disease, and we found a way to stop it." His group's report of their results will appear in the in December.

Their study focused on catalase, an enzyme that mops up excess oxidants, because catalase normally helps to prevent the kind of damage seen in the brains of patients with and previous work had found catalase proteins deposited within .

Lila Habib, a bioengineering graduate student and the first author of the report, added amyloid to cultured neural cells and looked at its effects.

"We were able to determine that amyloid beta and this anti-oxidant enzyme, catalase, interact, and that this interaction harmed catalase so it wasn't able to perform its physiological function: to degrade hydrogen peroxide into oxygen and water," she said.

When Habib coated the amyloid with a small molecule designed to prevent its interaction with other proteins, she was able to restore the activity of catalase and return hydrogen peroxide to normal levels within the cells.

The coating Habib used to probe the interaction between amyloid and catalase is a candidate drug - one of a class of that Yang's lab has developed.

"Not only are we learning more about the disease, but we are also developing a potential strategy for treatment," said Yang, who is currently testing the new approach in a of the disease.

Explore further: Structure of sodium channels different than previously believed

Related Stories

Anti-inflammatory drug blocks brain plaques

Jun 24, 2008

Brain destruction in Alzheimer's disease is caused by the build-up of a protein called amyloid beta in the brain, which triggers damaging inflammation and the destruction of nerve cells. Scientists had previously shown that ...

Amyloid beta protein gets bum rap

Nov 09, 2009

While too much amyloid beta protein in the brain is linked to the development of Alzheimer's disease, not enough of the protein in healthy brains can cause learning problems and forgetfulness, Saint Louis University scientists ...

Alzheimer's prevention role discovered for prions

Jul 03, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

Researchers find new piece in Alzheimer's puzzle

Feb 25, 2009

Yale researchers have filled in a missing gap on the molecular road map of Alzheimer's disease. In the Feb. 26 issue of the journal Nature, the Yale team reports that cellular prion proteins trigger the process by which ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 0

More news stories

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...