Pivoting hooks of graphene's chemical cousin could revolutionize work of electron microscopes

Nov 01, 2010
This is a sample seen attached to the graphene oxide. Credit: University of Warwick/ Nano Letters

The single layer material Graphene was the subject of a Nobel prize this year but research led by a team of researchers at the University of Warwick has found molecular hooks on the surface of its close chemical cousin, Graphene Oxide, that will potentially provide massive benefits to researchers using transmission electron microscopes. They could even be used in building molecular scale mechanisms.

The research team, which includes Drs. Jeremy Sloan, Neil Wilson and PhD student Priyanka Pandey from the Department of Physics and Dr. Jon Rourke from the Department of Chemistry together with the groups of Drs. Kazu Suenaga and Zheng Liu from AIST in Japan and Drs. Ian Shannon and Laura Perkins in Birmingham were looking at the possibility of using Graphene as a base to mount single molecules for imaging by . As Graphene forms an electron transparent sheet just one atom thick it would enable high precision, high contrast imaging of the molecules being studied as well as the study of any interactions they have with the supporting graphene.

While this idea is great in theory, Graphene is actually very difficult to create and manipulate in practice. The researchers therefore turned to Graphene's easier to handle cousin, Graphene Oxide. This choice turned out to be a spectacularly better material as they found extremely useful properties, in the form of ready-made molecular hooks that could make Graphene Oxide the support material of choice for future transmission electron microscopy of any molecule with oxygen on its surface.

This is a graphic of sample binding to a graphene oxide "hook". Credit: University of Warwick / Nano Letters

Graphene Oxide's name obscures the fact that it is actually a combination of carbon, oxygen and hydrogen. For the most part it still resembles the one atom thin sheet of pure Graphene, but it also has "functional groups" consisting of hydrogen paired with oxygen. These functional groups can bind strongly to molecules with external oxygens making them ideal tethers for researchers wishing to study them by transmission electron microscoscopy.

This feature alone will probably be enough to persuade many researchers to turn to Graphene Oxide as a support for the analysis of a range of molecules by transmission electron microscopy, but the researchers found yet another intriguing property of these handy hooks – the molecules attached to them move and pivot around them.

Dr Jeremy Sloan said: "Under the right conditions the not only provide molecular tethers that hold molecules in an exact spot they also allow the molecule to be spun in that position. This opens up a range of new opportunities for the analysis of such but could also be a useful mechanism for anyone seeking to create molecular sized "machinery"."

Explore further: Stressed out: Research sheds new light on why rechargeable batteries fail

More information: The research paper is entitled "Imaging the Structure, Symmetry, and Surface-Inhibited Rotation of Polyoxometalate Ions on Graphene Oxide" is published in Nano Letters and is by Dr Jeremy Sloan, Jonathan P. Rourke, Neil R. Wilson and Priyanka A. Pandey from the University of Warwick; Zheng Liu and Kazu Suenaga from National Institute for Advanced Industrial Science and Technology (AIST), Research Centre for Advanced Carbon Materials, Tsukuba, Ibaraki Japan; and Laura M. Perkins and Ian J. Shannon from the University of Birmingham.

Related Stories

Light-speed nanotech: Controlling the nature of graphene

Jan 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production ...

Highlight: Nanopatterning of Graphene

Mar 11, 2010

Center for Nanoscale Materials (CNM) at Argonne National Laboratory users from Politecnico di Milano in Italy, working collaboratively with researchers in the Electronic & Magnetic Materials & Devices Group, ...

Scientists explain graphene mystery

Aug 23, 2010

Nanoscale simulations and theoretical research performed at the Department of Energy's Oak Ridge National Laboratory are bringing scientists closer to realizing graphene's potential in electronic applications.

Recommended for you

Creating nanostructures using simple stamps

3 hours ago

Nanostructures of virtually any possible shape can now be made using a combination of techniques developed by the MESA+ Institute for Nanotechnology of the University of Twente. Especially the unique properties ...

New nanomaterial introduced into electrical machines

4 hours ago

Lappeenranta University of Technology in Finland has constructed the world's first prototype electrical motor using carbon nanotube yarn in the motor windings. The new technology may significantly enhance the performance.

Nanoparticles give up forensic secrets

16 hours ago

A group of researchers from Switzerland has thrown light on the precise mechanisms responsible for the impressive ability of nanoparticles to detect fingermarks left at crime scenes.

Cheap hybrid outperforms rare metal as fuel-cell catalyst

Oct 01, 2014

(Phys.org) —Graphene quantum dots created at Rice University grab onto graphene platelets like barnacles attach themselves to the hull of a boat. But these dots enhance the properties of the mothership, ...

User comments : 0