One-touch make-up -- for our cells

Nov 17, 2010

A new technique developed by scientists at the European Molecular Biology Laboratory in Grenoble, France and collaborators enables them to introduce up to 15 fluorescent markers to a mammalian cell in one go, and could help speed up drug development and screening. Their work is published online today in Nature Communications.

The cells in the different parts of this video are always the same, but, like actors using make-up to highlight different , they have fluorescent labels that mark different cellular components in different colours: blue shows the nucleus, yellow shows tubulin (a component of the cell's scaffolding), red shows mitochondria, cyan shows the membranes of vesicles called endosomes, and purple shows other membrane structures.

Instead of spending hours applying first one colour of make-up – or fluorescent label – and then another, scientists were able to create the equivalent of a make-up brush that is applied only once and highlights different features simultaneously.

This video is not supported by your browser at this time.
Cells from a pig's cardiovascular system with different components are labeled simultaneously, using the new Multi-Label technology. Credit: P. Berger/PSI

The underlying technique was first developed by Imre Berger from the European Molecular Biology Laboratory (EMBL) in Grenoble, France, as part of a method called MultiBac, for expressing protein complexes in insect cells. In work published today in Nature Communications, Imre Berger and Philipp Berger from the Paul Scherrer Institut (PSI) in Villigen, Switzerland, joined forces to adapt this technology concept to mammalian cells like our own for the first time.

It essentially involves rapidly engineering a single vector to deliver a theoretically unlimited number of foreign genes, to a cell. To date, the scientists have successfully delivered up to 15 genes in this way.

The protein encoded by each of those genes can carry a fluorescent label, so this makes multiple labelling much more efficient than previous methods. The new labelling technique for mammalian , called MultiLabel, could help make drug development and screening considerably faster, since it allows scientists to precisely label many cellular components involved in a given disease process and follow them all at the same time.

Explore further: Herpes virus hijackers

Related Stories

FSU researchers make observing cell functions easier

May 08, 2008

Now that the genome (DNA) of humans and many other organisms have been sequenced, biologists are turning their attention to discovering how the many thousands of structural and control genes -- the “worker ...

Recommended for you

Herpes virus hijackers

15 hours ago

The virus responsible for the common cold sore hijacks the machinery within our cells, causing them to break down and help shield the virus from our immune system, researchers from the University of Cambridge ...

Bacteria cooperate to repair damaged siblings

May 21, 2015

A University of Wyoming faculty member led a research team that discovered a certain type of soil bacteria can use their social behavior of outer membrane exchange (OME) to repair damaged cells and improve ...

New antibody insecticide targets malaria mosquito

May 20, 2015

Malaria is a cruel and disabling disease that targets victims of all ages. Even now, it is estimated to kill one child every minute. Recent progress in halting the spread of the disease has hinged on the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.