One-touch make-up -- for our cells

Nov 17, 2010

A new technique developed by scientists at the European Molecular Biology Laboratory in Grenoble, France and collaborators enables them to introduce up to 15 fluorescent markers to a mammalian cell in one go, and could help speed up drug development and screening. Their work is published online today in Nature Communications.

The cells in the different parts of this video are always the same, but, like actors using make-up to highlight different , they have fluorescent labels that mark different cellular components in different colours: blue shows the nucleus, yellow shows tubulin (a component of the cell's scaffolding), red shows mitochondria, cyan shows the membranes of vesicles called endosomes, and purple shows other membrane structures.

Instead of spending hours applying first one colour of make-up – or fluorescent label – and then another, scientists were able to create the equivalent of a make-up brush that is applied only once and highlights different features simultaneously.

This video is not supported by your browser at this time.
Cells from a pig's cardiovascular system with different components are labeled simultaneously, using the new Multi-Label technology. Credit: P. Berger/PSI

The underlying technique was first developed by Imre Berger from the European Molecular Biology Laboratory (EMBL) in Grenoble, France, as part of a method called MultiBac, for expressing protein complexes in insect cells. In work published today in Nature Communications, Imre Berger and Philipp Berger from the Paul Scherrer Institut (PSI) in Villigen, Switzerland, joined forces to adapt this technology concept to mammalian cells like our own for the first time.

It essentially involves rapidly engineering a single vector to deliver a theoretically unlimited number of foreign genes, to a cell. To date, the scientists have successfully delivered up to 15 genes in this way.

The protein encoded by each of those genes can carry a fluorescent label, so this makes multiple labelling much more efficient than previous methods. The new labelling technique for mammalian , called MultiLabel, could help make drug development and screening considerably faster, since it allows scientists to precisely label many cellular components involved in a given disease process and follow them all at the same time.

Explore further: Molecular gate that could keep cancer cells locked up

add to favorites email to friend print save as pdf

Related Stories

FSU researchers make observing cell functions easier

May 08, 2008

Now that the genome (DNA) of humans and many other organisms have been sequenced, biologists are turning their attention to discovering how the many thousands of structural and control genes -- the “worker ...

Recommended for you

Molecular gate that could keep cancer cells locked up

16 hours ago

In a study published today in Genes & Development, Dr Christian Speck from the MRC Clinical Sciences Centre's DNA Replication group, in collaboration with Brookhaven National Laboratory (BNL), New York, ...

The 'memory' of starvation is in your genes

20 hours ago

During the winter of 1944, the Nazis blocked food supplies to the western Netherlands, creating a period of widespread famine and devastation. The impact of starvation on expectant mothers produced one of the first known ...

Sugar mimics guide stem cells toward neural fate

Jul 30, 2014

Embryonic stem cells can develop into a multitude of cells types. Researchers would like to understand how to channel that development into the specific types of mature cells that make up the organs and other structures of ...

User comments : 0