New ocean acidification study shows added danger to already struggling coral reefs

Nov 08, 2010
In a study published in PNAS, University of Miami scientist Rebecca Albright and colleagues report that ocean acidification could compromise the successful fertilization, larval settlement and survivorship of Elkhorn corals. The research results suggest that ocean acidification could severely impact the ability of coral reefs to recover from disturbance, said the authors. Credit: UM/RSMAS

A new study led by scientists at the University of Miami Rosenstiel School of Marine and Atmospheric Science suggests that over the next century recruitment of new corals could drop by 73 percent, as rising CO2 levels turn the oceans more acidic. The research findings reveal a new danger to the already threatened Caribbean and Florida reef Elkhorn corals.

"Ocean acidification is widely viewed as an emerging threat to ," said Rosenstiel School graduate student Rebecca Albright. "Our study is one of the first to document the impacts of ocean acidification on recruitment."

Albright and colleagues report that ocean acidification could compromise the successful fertilization, larval settlement and survivorship of Elkhorn corals. The research results suggest that ocean acidification could severely impact the ability of coral reefs to recover from disturbance, said the authors.

Elkhorn coral, known as Acropora palmata, is recognized as a critical reef-building species that once dominated tropical coral reef ecosystems. In 2006, Elkhorn was included on the U.S. largely due to severe population declines over the past several decades.

This video is not supported by your browser at this time.
Graduate student Rebecca Albright and colleagues report in the Proceedings from the National Academy of Sciences that ocean acidification could compromise the successful fertilization, larval settlement and survivorship of threatened Elkhorn corals. The research results suggest that ocean acidification could severely impact the ability of coral reefs to recover from disturbance. Credit: UM/RSMAS

The absorption of carbon dioxide by seawater, which results in a decline in , is termed ocean acidification. The increased acidity in the seawater is felt throughout the marine food web as calcifying organisms, such as corals, oysters and sea urchins, find it more difficult to build their shells and skeletons making them more susceptible to predation and damage.

Recent studies, such as this one conducted by Albright and colleagues, are beginning to reveal how affects non-calcifying stages of marine organisms, such as reproduction.

"Reproductive failure of young coral species is an increasing concern since reefs are already highly stressed from bleaching, hurricanes, disease and poor water quality," said Chris Langdon, associate professor at the Rosenstiel School and co-author of the study.

Explore further: Food shortages could be most critical world issue by mid-century

More information: The paper, "Ocean acidification compromises recruitment success of the threatened Caribbean coral Acropora palmata," will be published in the Nov. 9 issue of Proceedings of the National Academy of Sciences (PNAS).

Related Stories

Ocean acidification threatens cold-water coral ecosystems

Apr 03, 2006

Corals don't only occur in warm, sun-drenched, tropical seas; some species are found at depths of three miles or more in cold, dark waters throughout the world's oceans. Some cold-water coral reefs are home to more than 1,300 ...

Two more corals become threatened species

May 08, 2006

Two types of corals have been declared threatened under the U.S. Endangered Species Act -- reportedly the first time coral has been placed on that list.

Corals and climate change

Aug 22, 2007

A modest new lab at the Rosenstiel School is the first of its kind to tackle the global problem of climate change impacts on corals. Fully operational this month, this new lab has begun to study how corals ...

CO2 hurts reef growth

Jul 11, 2007

Coral reefs are at risk of going soft, quite literally turning to mush as rising carbon dioxide levels prevent coral from forming tough skeletons, according to UQ research.

Recommended for you

More, bigger wildfires burning western US, study shows

4 minutes ago

Wildfires across the western United States have been getting bigger and more frequent over the last 30 years – a trend that could continue as climate change causes temperatures to rise and drought to become ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

A_Paradox
not rated yet Dec 06, 2010
Ocean acidification is the big sleeper issue. I guess US & Canadian citizens wont understand this question, but Brits, Ozzies & New Zealanders will: Just about all of us love fish and chips [pron "fush en chups" in NZ], but how many of us will be willing to eat jellyfish and chips when all the finned sea animals have disappeared?

More news stories

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...