NASA extends TIMED mission for fourth time

Nov 05, 2010
The primary science objective of the TIMED mission is to understand the energy transfer into and out of the Mesosphere and Lower Thermosphere/Ionosphere region of the Earth's atmosphere (energetics), as well as the basic structure (i.e., pressure, temperature, and winds) that results from the energy transfer into the region. Credit: NASA

Nine years after beginning its unprecedented look at the gateway between Earth's environment and space, not to mention collecting more data on the upper atmosphere than any other satellite, NASA's Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission has been extended again.

Before the launch of TIMED, the mesosphere and lower / -- which help protect us from harmful solar radiation -- had been one of the least explored and understood regions of our environment.

"The middle part of the atmosphere was the part we kind of ignored," says John Sigwarth, the deputy project scientist for TIMED at NASA's Goddard Space Flight Center in Greenbelt, MD. "It's too high for balloons and too low for spacecraft. So the understanding of this middle atmosphere and its impact on the upper atmosphere has been tremendously increased due to TIMED."

The mission will now continue to study the influences of the sun and humans on our . TIMED began its extended mission on Oct. 1, 2010, and will collect data through 2014. This is its fourth extension since the original 2-year mission began in January 2002. TIMED will focus this time on a problem that has long puzzled scientists: differentiating between human-induced and naturally occurring changes in this atmospheric region. This extension also allows TIMED to continue collecting data for longer than a full 11-year .

This is an artist's concept of the TIMED spacecraft. Credit: NASA/JPL/APL

"The sun is a variable star with an 11 year cycle," says Sigwarth. "So, if things change in the mesosphere, you don't know if it's because the sun changed or because human activity has caused the change. By getting back to the same point in the cycle, we can compare what it was like then, and what it's like now, and see if there's a long term trend of changes that's not solar related."

The key instrument performing this work is known as SABER (or Sounding of the Atmosphere using Broadband Emission Radiometry), built by Hampton University in Hampton, Va. SABER can remotely sense composition and temperature in the mesosphere.

In addition to checking for effects from humans, TIMED scientists would like to understand how cooling temperatures in the middle atmosphere are causing the thermosphere to become less dense and its composition to change. With fewer particles in the thermosphere, there's less drag on satellites in space, which affects how long spacecraft and space debris stay in orbit – information that must be integrated into calculations for orbit models.

Composition changes in the thermosphere can also alter ionospheric structures that affect radio wave propagation and communications. To help with this is an instrument called SEE (or the Solar EUV Experiment) built at the University of Colo., which looks at the sun's x-rays and extreme ultraviolet rays to see how they impact our atmosphere.

TIMED will also collaborate with NASA's newest eye on the Sun, the Solar Dynamics Observatory, which provides continuing measurements and new views of how solar activity is created.

Explore further: Giant crater in Russia's far north sparks mystery

More information: For more information about the TIMED mission and science, visit: stp.gsfc.nasa.gov/missions/timed/timed.htm

Related Stories

Similarities in Sun’s Effects on Earth and Mars

May 25, 2006

“Despite differences in the chemical compositions and densities of Earth’s and Mars’ atmospheres, we now have a definitive example showing that both planets’ atmospheres react similarly to varying levels of solar ...

Climate change affecting Earth's outermost atmosphere

Dec 11, 2006

Carbon dioxide emissions from the burning of fossil fuels will produce a 3 percent reduction in the density of Earth's outermost atmosphere by 2017, according to a team of scientists from the National Center for Atmospheric ...

A Puzzling Collapse of Earth's Upper Atmosphere

Jul 15, 2010

NASA-funded researchers are monitoring a big event in our planet's atmosphere. High above Earth's surface where the atmosphere meets space, a rarefied layer of gas called "the thermosphere" recently collapsed ...

Recommended for you

Giant crater in Russia's far north sparks mystery

12 hours ago

A vast crater discovered in a remote region of Siberia known to locals as "the end of the world" is causing a sensation in Russia, with a group of scientists being sent to investigate.

NASA Mars spacecraft prepare for close comet flyby

12 hours ago

NASA is taking steps to protect its Mars orbiters, while preserving opportunities to gather valuable scientific data, as Comet C/2013 A1 Siding Spring heads toward a close flyby of Mars on Oct. 19.

Bacteria manipulate salt to build shelters to hibernate

Jul 25, 2014

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, b ...

How do we terraform Venus?

Jul 25, 2014

It might be possible to terraform Venus some day, when our technology gets good enough. The challenges for Venus are totally different than for Mars. How will we need to fix Venus?

Biomarkers of the deep

Jul 25, 2014

Tucked away in the southwest corner of Spain is a unique geological site that has fascinated astrobiologists for decades. The Iberian Pyrite Belt (IPB) in Spain's Río Tinto area is the largest known deposit ...

User comments : 0