New insight into dementia pathophysiology

Nov 17, 2010

New research unravels a key molecular pathway underlying a neurodegenerative disorder that causes a devastating type of dementia. The study, published by Cell Press in the November 18 issue of the journal Neuron, sheds light on the pathological processing of Progranulin, a protein that normally promotes the survival of brain cells but is reduced in some neurodegenerative diseases.

Frontotemporal lobar degeneration (FTLD) refers to a group of disorders associated with degeneration of the frontal and temporal lobes of the brain. Symptoms include , aphasia, and semantic disorders. Mutation of the gene for PGRN is associated with the most common form of FTLD, which is also characterized by inclusions of TDP-43 protein in the brain. Abnormal accumulation of TDP-43 has also been linked with amyotrophic (ALS).

While it is clear that a reduction in PGRN is causative for FTLD-TDP, the underlying mechanism is unknown. "Elucidation of PGRN action and the control of PGRN levels may have broad relevance for both FTLD and ALS," explains senior study author, Dr. Stephen M. Strittmatter from Yale University School of Medicine. "In order to advance the understanding of PGRN biology, we searched for cell surface binding sites that interact with PGRN."

Dr. Strittmatter and colleagues identified Sortilin as a key PGRN binding site on the surface of cortical neurons. In the stressed nervous system, PGRN was not expressed in neurons, but in nearby glial cells. Sortilin rapidly transferred PGRN inside of the neurons and delivered it to lysosomes, cellular structures that degrade proteins. Mice that did not express Sortilin exhibited high levels of extracellular PGRN. Importantly, mice with a PGRN deficiency similar to that seen in FLTD-TDP, were fully normalized with regards to PGRN levels when Sortilin was deleted.

Taken together, the findings implicate Sortilin-mediated PGRN endocytosis in FTLD-TDP pathophysiology and identify Sortilin binding as a potential therapeutic site to alter PGRN pathology. However, the authors are careful to caution that additional studies elucidating the connection between PGRN, Sortilin, and TDP-43 are needed. "Future functional studies of Sortilin in PGRN biology will require development of robust rodent models for PGRN-dependent neurodegeneration," says Dr. Strittmatter. "Nevertheless, our work implicates Sortilin-mediated PGRN endocytosis as a key pathway for further study in FTLD, and possible ALS, pathophysiology."

Explore further: How nerve cells communicate with each other over long distances

add to favorites email to friend print save as pdf

Related Stories

More genes for Lou Gehrig's disease identified

Apr 07, 2008

In recent months a spate of mutations have been found in a disease protein called TDP-43 that is implicated in two neurodegenerative disorders: amyotrophic lateral sclerosis (ALS), also called Lou Gehrig’s disease, and ...

Recommended for you

Why your favourite song takes you down memory lane

Aug 28, 2014

Music triggers different functions of the brain, which helps explain why listening to a song you like might be enjoyable but a favourite song may plunge you into nostalgia, scientists said on Thursday.

Transcranial Magnetic Stimulation of brain boosts memory

Aug 28, 2014

Stimulating a particular region in the brain via non-invasive delivery of electrical current using magnetic pulses, called Transcranial Magnetic Stimulation, improves memory, reports a new Northwestern Medicine ...

User comments : 0