Researchers discover important link between adrenal gland hormone and brain in hypertension

Nov 09, 2010

A hormone already responsible for increasing blood pressure by prompting the kidneys to retain salt appears to moonlight as a major stimulator of the brain centers that control the vascular system and blood pressure.

Researchers at UT Southwestern Medical Center studied patients who overproduce aldosterone to see whether the hormone had any effect on sympathetic responsible for blood pressure increases.

"Between 10 percent and 20 percent of patients with high blood pressure who are resistant to treatment have elevated aldosterone hormones," said Dr. Wanpen Vongpatanasin, associate professor of internal medicine at UT Southwestern and senior author of the study in the October issue of the & Metabolism. "Previous studies in animals showed that this hormone can affect many parts of the brain that control the cardiovascular system. We wanted to understand whether aldosterone also increases the nerve activity that causes constriction of blood vessels, which elevates blood pressure in humans.

"Since aldosterone can cause high blood pressure by affecting multiple systems and not just the kidneys, this study sheds light on why blood pressure is so difficult to control in patients with high aldosterone levels."

Aldosterone is an essential hormone that regulates electrolytes in the body. Created by the adrenal glands, it is responsible for re-absorption of sodium and water into the bloodstream and for regulating potassium. High levels of aldosterone can cause , muscle cramps and weakness.

Dr. Vongpatanasin and her team studied 14 hypertensive patients who overproduced aldosterone, a condition known as primary aldosteronism, and compared them with 20 hypertensive patients and 18 patients with normal blood pressure.

The data showed that in humans, aldosterone does increase activity in a part of the nervous system that raises blood pressure. Such activity contributes to the onset of hypertension. Furthermore, when the nerve activity was measured in patients who had adrenal surgery to remove tumors that produced this , both nerve activity and blood pressure decreased substantially.

"Our study also suggested that treatment of hypertension in these patients not only requires targeting the kidneys but also the sympathetic nervous system that controls ," Dr. Vongpatanasin said. "Since our study shows that patients with high aldosterone levels have high nerve activity, future studies are needed to determine how we could prevent effects of aldosterone on the brain."

Explore further: The impact of bacteria in our guts

add to favorites email to friend print save as pdf

Related Stories

New guidelines for treating resistant hypertension

Jun 06, 2008

Resistant hypertension, blood pressure that remains above goal despite taking three antihypertensive medications or high blood pressure that is controlled but requires four or more medications to do so, may benefit from specialized ...

Sympathetic brain to blame for high blood pressure

Jul 06, 2010

High blood pressure can be attributed to a disruption of blood flow to the kidneys, known as renovascular hypertension, which is caused by a narrowing or obstruction of the blood vessels that supply the kidneys. To date, ...

Recommended for you

The impact of bacteria in our guts

10 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

11 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

12 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0