Understanding the human neurosystem: From the brain of a locust

Nov 29, 2010
Single insect neurons are cultured on a carefully engineered surface to reveal growth morphology. Credit: AFTAU

In the human brain, mechanical stress -- the amount of pressure applied to a particular area -- requires a delicate balance. Just the right force keeps neurons together and functioning as a system within the body, and proper nerve function is dependent on this tension.

Now researchers at Tel Aviv University say that mechanical stress plays an even more important role than medical science previously believed. Their research has the potential to tell us more than ever before about the form and function of neuronal systems, including the human . And they've used the common locust to prove it.

Prof. Amir Ayali of Tel Aviv University's Department of Zoology, with Prof. Yael Hanein of the School of Electrical Engineering and Prof. Eshel Ben-Jacob of the Department of Physics, has successfully taken from the desert locust to delve deeper into the workings of the mammalian neurosystem. Their most recent discovery, he says, is that mechanical stress plays a pivotal role not only in the development of the brain, but also its function.

Recently published in several journals including and Nanotechnology, this research demonstrates that mechanical stress is instrumental in several key phenomena in . Once a neuron has developed, explains Prof. Ayali, it is attracted to and then attaches to another neuron, which pulls it to the appropriate place within the neurosystem. "This tension is crucial for making the right connections," he says.

A neuron system in a dish

According to Prof. Ayali, insect cells provide a unique window into the world of neurons because they're easier to work with than human cells. Large enough to culture, Prof. Ayali and his fellow researchers harvested insect neurons and allowed them to regenerate, then built an in vitro nervous system in a dish. The team was then able to follow each single cell optically, watching how they regenerated and recording their electrical activity.

Most importantly, the team was able to observe the neurons form a network. A key feature, Prof. Ayali says, is mechanical tension. As the neurosystem develops, some cells are eliminated, while others are stabilized and preserved. Cells that successfully connect with one another maintain this connection through mechanical stress. This tension draws cells to their destined locations throughout the neurosystem. As neurons develop, they migrate to the appropriate location in the body, and it's that draws them there.

A meeting of the minds

Although the researchers' choice of insect cells for their investigation is unorthodox, Prof. Ayali says that the benefits are tremendous. The cells are basic enough to be applicable to any system, including the human neurosystem, he notes. If it were not for the large size and low density that insect cells provide, the team would not be able to follow individual cells and track the connections they make. "We're looking at simple phenomena that apply generally," he says. "The development from single to groups of clusters is common to every kind of neuron."

The research is unique in more ways than one. Prof. Ayali emphasizes that this project exhibits a truly interdisciplinary approach to neuroscience. The project includes researchers from numerous scientific fields, including zoology, electrical engineering and physics.

Explore further: Memory in silent neurons

add to favorites email to friend print save as pdf

Related Stories

Seeing a bionic eye on medicine's horizon

Mar 22, 2010

Television's Six Million Dollar Man foresaw a future when man and machine would become one. New research at Tel Aviv University is making this futuristic "vision" of bionics a reality.

Putting the squeeze on fat cells

Nov 22, 2010

From fad diets to exercise programs, Americans continue to fight the battle of the bulge. Now they'll have help from recent Tel Aviv University research that has developed a new method to look at how fat cells -- which produce ...

Appealing the death sentence for brain cells

May 29, 2008

A new drug candidate discovered by Tel Aviv University researcher Prof. Illana Gozes may lead to an effective treatment against the debilitative Alzheimer's disease. This compound could also treat a number of diseases where ...

Stress and fear can affect cancer's recurrence

Feb 27, 2008

After the surgical removal of a malignant tumor, the chance that cancer will re-appear in a different location of the body remains high. But new research from Tel Aviv University, in a bold new field called Psychoneuroimmunology, ...

Battling diabetes with beta cells

Sep 02, 2008

Affecting eight percent of America's population, diabetes can lead to blindness, kidney failure, strokes and heart disease. Thanks to Tel Aviv University researchers, a new cure –– based on advances in cell therapy –– ...

Can cannibalism fight infections?

Feb 02, 2009

Whenever humans create a new antibiotic, deadly bacteria can counter it by turning into new, indestructible super-bugs. That's why bacterial infection is the number one killer in hospitals today. But new research ...

Recommended for you

Neurons in human skin perform advanced calculations

8 hours ago

Neurons in human skin perform advanced calculations, previously believed that only the brain could perform. This is according to a study from Umeå University in Sweden published in the journal Nature Ne ...

Memory in silent neurons

Aug 31, 2014

When we learn, we associate a sensory experience either with other stimuli or with a certain type of behavior. The neurons in the cerebral cortex that transmit the information modify the synaptic connections ...

Why your favourite song takes you down memory lane

Aug 28, 2014

Music triggers different functions of the brain, which helps explain why listening to a song you like might be enjoyable but a favourite song may plunge you into nostalgia, scientists said on Thursday.

User comments : 0