New heart pump to provide temporary assist for infants, adults

Nov 09, 2010
This illustration shows a new type of heart pump inserted with a catheter to improve the survival rate for infants undergoing a series of surgeries to correct a deadly birth defect. The researchers are developing a "viscous impeller pump" for children born with univentricular circulation, a congenital heart disease that is the leading cause of death from birth defects in the first year of a child's life. Credit: Rose-Hulman Institute of Technology

Researchers have created a new type of heart pump inserted with a catheter to improve the survival rate for infants undergoing a series of surgeries to correct a deadly birth defect.

The researchers are developing a "viscous impeller pump" for children born with univentricular circulation, a that is the leading cause of death from birth defects in the first year of a child's life, said Steven Frankel, a Purdue University professor of mechanical engineering.

The innovation also might be used for temporarily treating adults with the disease.

The human heart normally contains two pumps, or : one circulates oxygenated blood throughout the body, and the other, less powerful, ventricle circulates deoxygenated blood to the lungs.

Babies born with the defect have only one functioning ventricle, but French surgeon Francois Fontan discovered more than three decades ago that the infants could survive on a single ventricle by restructuring the configuration of blood vessels called the inferior vena cava and superior vena cava. The infants must have a series of three open heart surgeries performed over a period of months or years because they are not be able to survive the shock of all three surgeries at once.

At least 30 percent of the babies do not survive the surgeries, called the Fontan procedures.

To improve the survival rate, Mark Rodefeld, a medical doctor and associate professor of surgery at the Indiana University School of Medicine, proposed in 2003 to provide a mechanical pump to assist the heart during surgery.

Steven Frankel, a Purdue professor of mechanical engineering, is creating a new type of heart pump (pictured on computer screen) for infants born with univentricular circulation, a congenital heart disease that is the leading cause of death from birth defects in the first year of a child's life. Credit: Purdue Mechanical Engineering file photo/Michael Black

Such an innovation would make it possible to perform all three surgeries at the same time, while also providing a temporary heart-assist technology for adults who've had the surgeries, Frankel said.

"A big advantage of this pump is that it gets delivered through the skin with a without ," said Frankel, who is working with Rodefeld and other researchers at the IU School of Medicine, the University of Louisville and the Rose-Hulman Institute of Technology's Rose-Hulman Ventures, which is developing a prototype of the pump.

The researchers have received a $2.1 million, four-year grant from the National Institutes of Health's National Heart, Lung and Blood Institute to continue developing the . The research also involves graduate student Jeffrey R. Kennington and Jun Chen, a Purdue assistant professor of mechanical engineering.

Researchers plan to implant the new pump into a four-way intersection where the inferior and superior vena cavae meet the right and left pulmonary arteries. Once inserted with a catheter, the pump can be dramatically expanded, forming a shape that resembles two cones joined at the base. The device spins at about 10,000 rpm, connected via a slender cable to a small motor outside of the body.

Frankel and graduate student Travis Fisher originated the design, applying concepts from textbook fluid dynamics developed a century ago by Hungarian engineer Theodore von Kçrmçn, founder of modern aerodynamics.

The researchers also found design inspiration from an unlikely source: cocktail umbrellas.

"A major challenge was, how do we get this into the body, and we thought of the cocktail umbrella," Frankel said. "It starts out flat and compact and then opens out with a similar shape, with upper and lower segments."

A pump is needed because relying on one ventricle reduces the heart's circulatory force.

"It's a weak circulatory system, so you don't get really good pumping into the lungs, and the oxygenated blood returning to the heart doesn't quite fill the ventricle to begin the cycle over again," Frankel said. "A patient right now who's walking around in their 20s, who had the surgery 20 years ago, may start having heart problems and need some support, either as a bridge to transplant or as a temporary means of support. This pump represents a way to do that in an outpatient setting. It is designed to be in the body for two weeks at most, almost like a disposable item."

The rotating device contains riblike grooves to efficiently pump blood. The design is promising because testing has shown that the rotating device causes minimal damage to red blood cells.

"Because it's larger than other experimental pumps, it doesn't have to spin as fast - a maximum of about 10,000 rpm compared to 50,000 for another experimental pump - so it causes less damage to blood cells," Frankel said. "It's like the gentle cycle in a washing machine."

Experiments at the University of Louisville that mimic the circulatory system show the degree of damage done to blood cells by the spinning pump is acceptable for clinical use. That work was conducted by U of L's Guruprasad A. Giridharan, an assistant professor in the Department of Bioengineering.

Explore further: Bionic ankle 'emulates nature'

add to favorites email to friend print save as pdf

Related Stories

Students Build Smaller, Smarter Heart Pump

Apr 29, 2005

A miniaturized heart pump designed by a team of University of Florida engineering students could become a life-saving alternative for patients waiting in long lines for scarce donor hearts. The UF team is creating a dev ...

Pump design could give new hope to heart patients

Apr 12, 2007

A new counter-flow heart pump being developed by Queensland University of Technology has the potential to revolutionise future designs of the mechanical heart. Lead researcher Associate Professor Andy Tan said the heart pump's ...

Recommended for you

New pain relief targets discovered

1 hour ago

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Building 'smart' cell-based therapies

1 hour ago

A Northwestern University synthetic biology team has created a new technology for modifying human cells to create programmable therapeutics that could travel the body and selectively target cancer and other ...

Proper stem cell function requires hydrogen sulfide

4 hours ago

Stem cells in bone marrow need to produce hydrogen sulfide in order to properly multiply and form bone tissue, according to a new study from the Center for Craniofacial Molecular Biology at the Herman Ostrow School of Dentistry ...

User comments : 0

More news stories

New pain relief targets discovered

Scientists have identified new pain relief targets that could be used to provide relief from chemotherapy-induced pain. BBSRC-funded researchers at King's College London made the discovery when researching ...

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...