Breaking new ground in synthesis of anti-cancer agents

Nov 18, 2010 By Regina Yu
Dr Ye Tao. Copyright : The Hong Kong Polytechnic University

An anti-cancer research jointly conducted by The Hong Kong Polytechnic University (PolyU) and Peking University Shenzhen Graduate School (PKUSZ) has led to the first total synthesis of an anti-cancer marine natural product, grassypeptolide.

An anti-cancer research jointly conducted by The Hong Kong Polytechnic University (PolyU) and Peking University Shenzhen Graduate School (PKUSZ) has led to the first total synthesis of an anti-cancer marine natural product, grassypeptolide. Not only was this important finding featured on the inside front cover of the authoritative journal [Issue 40, Volume 46, (2010)], but also highlighted by Nature China.

This cutting-edge research has combined the effort of two research teams from PolyU and PKUSZ, both working under the leadership of Principal Investigator Dr. Tao YE, Associate Professor of PolyU’s Department of Applied Biology and Chemical Technology. This breakthrough has paved the way for further development of anti-cancer drugs from this natural product grassypeptolide — a compound isolated from a marine bacteria — which has recently emerged as a promising anti-cancer agent.

Despite its fascinating features, grassypeptolide was barely available from natural sources. But now it can be constructed by total chemical synthesis in 17 steps with this breakthrough. The key challenges in the total synthesis of grassypeptolide are the forming of the 31-member ring of grassypeptolide and the introducing of the two smaller thiazoline heterocycles — five-member rings containing sulphur and nitrogen — into the 31-member ring. The researchers constructed the 31-membered macrocycle via a precursor with more favorable cyclization kinetics; and introduced the thiazoline heterocycles at a later stage of the synthesis to prevent the thiazoline heterocycles from undergoing side reactions.

According to Dr. Ye, chemical synthesis of natural products and their analogues has been a key tool for drug discovery and development. In cases where the lead compound is obtainable only in minute quantities, thus not enough to carry out further bioassay tests, can solve the supply problem. Furthermore, the synthesis presents opportunities for modifying the structure of lead compound, with the ultimate aim of improving activity or the physicochemical/biological properties of the lead molecule. Synthesis is also crucial in the development of structure-activity relationships as the ability to make analogues of the lead compound chemically is a prerequisite for such studies.

Explore further: Why plants don't get sunburn

More information: The write-up on this breakthrough in Nature China can be viewed at:

Provided by Hong Kong Polytechnic University

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

New activity found for a potential anti-cancer agent

Nov 02, 2009

Pateamine A (PatA), a natural product first isolated from marine sponges, has attracted considerable attention as a potential anti-cancer agent, and now a new activity has been found for it, which may reveal yet another anti-cancer ...

Recommended for you

Why plants don't get sunburn

22 hours ago

Plants rely on sunlight to make their food, but they also need protection from its harmful rays, just like humans do. Recently, scientists discovered a group of molecules in plants that shields them from ...

Viral switches share a shape

Oct 27, 2014

A hinge in the RNA genome of the virus that causes hepatitis C works like a switch that can be flipped to prevent it from replicating in infected cells. Scientists have discovered that this shape is shared by several other ...

'Sticky' ends start synthetic collagen growth

Oct 27, 2014

Rice University researchers have delivered a scientific one-two punch with a pair of papers that detail how synthetic collagen fibers self-assemble via their sticky ends.

Cell membranes self-assemble

Oct 27, 2014

A self-driven reaction can assemble phospholipid membranes like those that enclose cells, a team of chemists at the University of California, San Diego, reports in Angewandte Chemie.

Emergent behavior lets bubbles 'sense' environment

Oct 27, 2014

Tiny, soapy bubbles can reorganize their membranes to let material flow in and out in response to the surrounding environment, according to new work carried out in an international collaboration by biomedical ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.