Study could mean greater anticipated global warming

Nov 22, 2010
This is the type of marine stratus clouds off the South American coast that was studied in the model simulations. Credit: Image courtesy Cameron McNaughton

Global climate models disagree widely in the magnitude of the warming we can expect with increasing carbon dioxide. This is mainly because the models represent clouds differently. A new modeling approach successfully simulates the observed cloud fields in a key region for climate. The study finds a greater tendency for clouds to thin with global warming than in any of the current climate models. This means the expected warming may be greater than currently anticipated.

Current state-of-the-art global climate models predict substantial warming in response to increases in greenhouse gases such as . The models, though, disagree widely in the magnitude of the warming we can expect. The disagreement among models is mainly due to the different representation of clouds. Some models predict that global mean will increase in a warmer climate and the increased reflection of will limit the predicted . Other models predict reduced cloudiness and magnified warming. In a paper that has just appeared in the Journal of Climate, researchers from the University of Hawaii Manoa (UHM) have assessed the performance of current global models in simulating clouds and have presented a new approach to determining the expected cloud feedbacks in a warmer climate.

Lead author Axel Lauer at the International Pacific Research Center (IPRC) at UHM notes, "All the global climate models we analyzed have serious deficiencies in simulating the properties of clouds in present-day climate. It is unfortunate that the global models' greatest weakness may be in the one aspect that is most critical for predicting the magnitude of global warming."

To study the clouds, the researchers applied a model representing only a limited region of the atmosphere over the eastern Pacific Ocean and adjacent land areas. The clouds in this region are known to greatly influence present climate, yet current global models do poorly in representing them. The regional model, developed at the IPRC, successfully simulates key features of the region's present-day cloud fields, including the observed response of clouds to El Nino. Having evaluated the model's simulation of present-day conditions, the researchers examined the response of simulated clouds in a warmer climate such as it might be in 100 years from now. The tendency for clouds to thin and cloud cover to reduce was more pronounced in this model than in any of the current global models.

Co-author Kevin Hamilton concludes, "If our model results prove to be representative of the real global climate, then climate is actually more sensitive to perturbations by than current global models predict, and even the highest warming predictions would underestimate the real change we could see."

Explore further: Clean air: Fewer sources for self-cleaning

More information: Lauer, A., K. Hamilton, Y. Wang, V. T. Phillips, and R. Bennartz (2010), The Impact of Global Warming on Marine Boundary Layer Clouds over the Eastern Pacific - A Regional Model Study, Journal of Climate, Vol. 23, No. 21, 5844

Provided by University of Hawaii at Manoa

3.1 /5 (14 votes)
add to favorites email to friend print save as pdf

Related Stories

The insides of clouds may be the key to climate change

Feb 17, 2007

As climate change scientists develop ever more sophisticated climate models to project an expected path of temperature change, it is becoming increasingly important to include the effects of aerosols on clouds, according ...

Models look good when predicting climate change

Apr 02, 2008

The accuracy of computer models that predict climate change over the coming decades has been the subject of debate among politicians, environmentalists and even scientists. A new study by meteorologists at the University ...

NASA Study Links Severe Storm Increases, Global Warming

Dec 19, 2008

(PhysOrg.com) -- The frequency of extremely high clouds in Earth's tropics -- the type associated with severe storms and rainfall -- is increasing as a result of global warming, according to a study by scientists ...

Recommended for you

Clean air: Fewer sources for self-cleaning

4 hours ago

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

There's something ancient in the icebox

4 hours ago

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Image: Grand Canyon geology lessons on view

10 hours ago

The Grand Canyon in northern Arizona is a favorite for astronauts shooting photos from the International Space Station, as well as one of the best-known tourist attractions in the world. The steep walls of ...

First radar vision for Copernicus

11 hours ago

Launched on 3 April, ESA's Sentinel-1A satellite has already delivered its first radar images of Earth. They offer a tantalising glimpse of the kind of operational imagery that this new mission will provide ...

User comments : 0

More news stories

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...

Clean air: Fewer sources for self-cleaning

Up to now, HONO, also known as nitrous acid, was considered one of the most important sources of hydroxyl radicals (OH), which are regarded as the detergent of the atmosphere, allowing the air to clean itself. ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Deadly human pathogen Cryptococcus fully sequenced

Within each strand of DNA lies the blueprint for building an organism, along with the keys to its evolution and survival. These genetic instructions can give valuable insight into why pathogens like Cryptococcus ne ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...