Graphene's strength lies in its defects

Nov 11, 2010
Engineers had thought that sheet of graphene that are joined together would have weakneses at the point of attachment. In some cases, however, the area where two sheets of graphene are joined can be as strong as pure graphene. Vivek Shenoy, with graduate student Rassin Grantab, illustrates the carbon heptagons that mark these “grain boundaries.” Credit: Mike Cohea/Brown University

The website of the Nobel Prize shows a cat resting in a graphene hammock. Although fictitious, the image captures the excitement around graphene, which, at one atom thick, is the among the thinnest and strongest materials ever produced.

A significant obstacle to realizing graphene's potential lies in creating a surface large enough to support a theoretical sleeping cat. For now, material scientists stitch individual graphene sheets together to create sheets that are large enough to investigate possible applications. Just as sewing patches of fabric together may create weaknesses where individual patches meet, defects can weaken the "grain boundaries" where graphene sheets are stitched together — at least that is what engineers had thought.

Now, engineers at Brown University and the University of Texas–Austin have discovered that the grain boundaries do not compromise the material's strength. The grain boundaries are so strong, in fact, that the sheets are nearly as strong as pure graphene. The trick, they write in a paper published in Science, lies in the angles at which the individual sheets are stitched together.

"When you have more defects, you expect the strength to be compromised," said Vivek Shenoy, professor of engineering and the paper's corresponding author, "but here it is just the opposite."

The finding may propel development of larger graphene sheets for use in electronics, optics and other industries.

Graphene is a two-dimensional surface composed of strongly bonded carbon in a nearly error-free order. The basic unit of this lattice pattern consists of six carbon atoms joined together chemically. When a graphene sheet is joined with another graphene sheet, some of those six-carbon hexagons become seven-carbon bonds — heptagons. The spots where heptagons occur are called "critical bonds."

The critical bonds, located along the grain boundaries, had been considered the weak links in the material. But when Shenoy and Rassin Grantab, a fifth-year graduate student, analyzed how much strength is lost at the grain boundaries, they learned something different.

"It turns out that these grain boundaries can, in some cases, be as strong as pure graphene," Shenoy said.

The engineers then set out to learn why. Using atomistic calculations, they discovered that tilting the angle at which the sheets meet — the grain boundaries — influenced the material's overall strength. The optimal orientation producing the strongest sheets, they report, is 28.7 degrees for sheets with an armchair pattern and 21.7 degrees for sheets with a zigzag layout. These are called large-angle grain boundaries.

Large-angle grain boundaries are stronger because the bonds in the heptagons are closer in length to the bonds naturally found in graphene. That means in large-angle , the bonds in the heptagons are less strained, which helps explain why the material is nearly as strong as pure despite the defects, Shenoy said.

"It's the way the defects are arranged," Shenoy said. "The grain boundary can accommodate the heptagons better. They're more relaxed."

Explore further: Stressed out: Research sheds new light on why rechargeable batteries fail

Related Stories

UH professor taking next step with graphene research

Oct 19, 2010

The 2010 Nobel Prize in Physics went to the two scientists who first isolated graphene, one-atom-thick crystals of graphite. Now, a researcher with the University of Houston Cullen College of Engineering is trying to develop ...

Seeing Moire in Graphene

Apr 27, 2010

(PhysOrg.com) -- Researchers at the National Institute of Standards and Technology and the Georgia Institute of Technology have demonstrated that atomic scale moiré patterns, an interference pattern ...

Super-thin carbon sheets poised to revolutionize electronics

Mar 02, 2009

Super-thin films of carbon with exotic properties, now taking the scientific world by storm, may soon mean a new era of brighter, faster, and smaller computers, smart phones, and other consumer electronics. Brighter digital ...

Recommended for you

Blades of grass inspire advance in organic solar cells

Sep 30, 2014

Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, an international research team led by Alejandro Briseno of the University of Massachusetts Amherst ...

How to make a "perfect" solar absorber

Sep 29, 2014

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material's spectrum of absorption just right: It should absorb virtually all wavelengths of light that ...

User comments : 0