New genetic marker makes fruit fly a better model for brain development and diseases

November 12, 2010

Belgian researchers have improved the fruit fly as model for studying the connections between brain cells. The researchers developed a specific marker for a part of the fly's nerve cell which had previously been difficult to distinguish. Their discovery will not only contribute to gaining a better insight into brain development but also makes the fruit fly into a better model system for studying brain development and brain disorders.

The human brain is composed of 100 billion individual which communicate with each other via a complex network of connections. Errors in communications of these cells are often at the basis of and nerve diseases such as Alzheimer's and multiple sclerosis. In the search for possible solutions to these diseases, one important aspect is to understand how the connections between nerve cells develop.

The fruit fly, Drosophila melanogaster, is an important, low-cost model organism with 60% genetic similarity with humans. The fruit fly plays a significant role in clarifying various neurological processes such as the way our memory works and our sense of smell and in studying particular . The team headed by Bassem Hassan uses the fruit fly as a model to study .

Though Drosophila has long been used to study the connections between nerve cells, one specific marker was still missing. To understand the whole circuit between nerve cells, markers are needed for the different compartments of nerve cells (presynaptic or output cells and postsynaptic or input cells).

Under the direction of Bassem Hassan and in collaboration with Wim Annaert, Laura Nicolaï, Ariane Ramaekers and their colleagues have identified the missing marker, DenMark (Dendritic Marker), a hybrid of a mouse protein and a fluorescent protein. The high specificity of such a marker for the input compartment of the nerve cells in Drosophila gives rise to hope that it can also be used in other model organisms.

Nerve cells communicate via a synapse. A synapse is a space in the connection between nerve cells, more specifically the space between the presynaptic membrane (of an axon) and the postsynaptic membrane (of a dendrite). Axons conduct away from the cell, dendrites (usually) to it. The "message is transmitted" via the synapse by neurotransmitters.

Explore further: Gas on your mind

More information: Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila - PNAS - Nicolaï et al. - www.pnas.org/content/early/2010/11/03/1010198107

Related Stories

Gas on your mind

December 11, 2006

Scientists at the University of Leicester are to gain a greater insight into the workings of the human mind…through the study of a snail’s brain.

Milestone in the regeneration of brain cells

August 20, 2007

The majority of cells in the human brain are not nerve cells but star-shaped glia cells, the so called “astroglia”. “Glia means “glue”, explains Götz. “As befits their name, until now these cells have been regarded ...

Researchers make new finding about how memory is stored

April 23, 2008

Researchers at Wake Forest University School of Medicine are the first to show that the location of protein-destroying “machines” in nerve cells in the brain may play an important role in how memories are formed – a ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.