New genetic marker makes fruit fly a better model for brain development and diseases

Nov 12, 2010

Belgian researchers have improved the fruit fly as model for studying the connections between brain cells. The researchers developed a specific marker for a part of the fly's nerve cell which had previously been difficult to distinguish. Their discovery will not only contribute to gaining a better insight into brain development but also makes the fruit fly into a better model system for studying brain development and brain disorders.

The human brain is composed of 100 billion individual which communicate with each other via a complex network of connections. Errors in communications of these cells are often at the basis of and nerve diseases such as Alzheimer's and multiple sclerosis. In the search for possible solutions to these diseases, one important aspect is to understand how the connections between nerve cells develop.

The fruit fly, Drosophila melanogaster, is an important, low-cost model organism with 60% genetic similarity with humans. The fruit fly plays a significant role in clarifying various neurological processes such as the way our memory works and our sense of smell and in studying particular . The team headed by Bassem Hassan uses the fruit fly as a model to study .

Though Drosophila has long been used to study the connections between nerve cells, one specific marker was still missing. To understand the whole circuit between nerve cells, markers are needed for the different compartments of nerve cells (presynaptic or output cells and postsynaptic or input cells).

Under the direction of Bassem Hassan and in collaboration with Wim Annaert, Laura Nicolaï, Ariane Ramaekers and their colleagues have identified the missing marker, DenMark (Dendritic Marker), a hybrid of a mouse protein and a fluorescent protein. The high specificity of such a marker for the input compartment of the nerve cells in Drosophila gives rise to hope that it can also be used in other model organisms.

Nerve cells communicate via a synapse. A synapse is a space in the connection between nerve cells, more specifically the space between the presynaptic membrane (of an axon) and the postsynaptic membrane (of a dendrite). Axons conduct away from the cell, dendrites (usually) to it. The "message is transmitted" via the synapse by neurotransmitters.

Explore further: The origin of the language of life

More information: Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila - PNAS - Nicolaï et al. - www.pnas.org/content/early/2010/11/03/1010198107

Provided by Flanders Institute for Biotechnology

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Researchers make new finding about how memory is stored

Apr 23, 2008

Researchers at Wake Forest University School of Medicine are the first to show that the location of protein-destroying “machines” in nerve cells in the brain may play an important role in how memories are formed – a ...

Gas on your mind

Dec 11, 2006

Scientists at the University of Leicester are to gain a greater insight into the workings of the human mind…through the study of a snail’s brain.

Milestone in the regeneration of brain cells

Aug 20, 2007

The majority of cells in the human brain are not nerve cells but star-shaped glia cells, the so called “astroglia”. “Glia means “glue”, explains Götz. “As befits their name, until now these cells have been regarded ...

Recommended for you

The origin of the language of life

20 hours ago

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.