Fusion makes major step forward at MIT through studies of the plasma edge

Nov 08, 2010

Researchers at MIT have taken steps toward practical fusion energy through better understanding of the physics that governs the interaction between plasmas and the material walls of the vessels that contain them.

The best developed approach for practical employs magnetic bottles to hold and isolate extremely hot plasmas inside a vacuum vessel. Using magnetic fields for thermal insulation has proven quite effective, allowing plasma temperatures in excess of 100 million C to be attained - conditions under which the nuclei fuse and release energy.

The device, a torus or donut-shaped magnetic bottle, has been found to perform particularly well and is the basis for , a full-scale international fusion experiment presently under construction in France with U.S. participation. Projections from current experiments to ITER, and beyond to energy producing reactors, presents a number of scientific and technical challenges. Prominent among these is handling the very large heat loads which occur at the interface between the plasma and the materials from which the reactor is constructed.

Plasma channels as it streams along in adjoining boundary layers. This produces narrow footprints on wall surfaces. The smaller the footprint, the more intense the heat flux becomes. In fact, the intensity can easily exceed the power handling ability of present technologies. Even worse, certain naturally occurring plasma oscillations can create transient heat loads which are larger still. Recent experiments on the Alcator C-Mod tokamak are aimed at understanding and overcoming this challenge by reducing the steady-state power conducted to the wall, by characterizing the physics which sets the area over which this power is distributed, and by investigating a confinement regime that eliminates transient heat loads.

One set of recent experiments in Alcator C-Mod used ultra-violet radiation from injected impurities to decrease power reaching the divertor, a portion of the wall with the highest heat flux footprint. These results are significant for ITER as well as future fusion reactors that will
provide commercial electricity, and show that redistributing the exhaust power by impurity radiation is a viable option.

Different experiments, aimed at understanding the physics that sets the heat-flux footprint size, have discovered its width is independent of the magnetic field line length. This behavior appears counter-intuitive at first, but is part of a growing body of evidence that self-regulatory heat transport mechanisms are at play, which tend to clamp the width of the heat flux profiles at a critical scale-length value.

Another aspect of the plasma-wall challenge is the elimination of transient heat loads, which arise from a relaxation oscillation produced spontaneously in many high performance plasmas. These oscillations help expel unwanted impurities that can contaminate the plasma, but they can also lead to unacceptably high power loads. Ongoing experiments are studying a confinement regime that simultaneously achieves good energy confinement without accumulation of impurities and without the oscillations.

These new findings will be presented in three invited talks at the American Physical Society, Division of Physics 52nd annual meeting on November 8-12 in Chicago.

Explore further: Galaxy dust findings confound view of early Universe

Provided by American Physical Society

5 /5 (7 votes)
add to favorites email to friend print save as pdf

Related Stories

Taming thermonuclear plasma with a snowflake

Nov 08, 2010

Physicists working on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory are now one step closer to solving one of the grand challenges of magnetic fusion research -- ...

New project aims for fusion ignition

May 10, 2010

Russia and Italy have entered into an agreement to build a new fusion reactor outside Moscow that could become the first such reactor to achieve ignition, the point where a fusion reaction becomes self-sustaining ...

Upping the power triggers an ordered helical plasma

Nov 02, 2009

If you keep twisting a straight elastic string, at some moment it starts kinking in a wild way. Something similar occurs when one increases the electrical current flowing in a magnetized plasma doughnut: it ...

Wanted: the right wall material for ITER

Oct 12, 2007

ASDEX Upgrade at Max Planck Institute of Plasma Physics (IPP) in Garching, Germany, recently became the world's first and only device allowing experiments with a wall completely clad with metal, viz. tungsten. ...

Recommended for you

Galaxy dust findings confound view of early Universe

Jan 31, 2015

What was the Universe like at the beginning of time? How did the Universe come to be the way it is today?—big questions and huge attention paid when scientists attempt answers. So was the early-universe ...

Evidence mounts for quantum criticality theory

Jan 30, 2015

A new study by a team of physicists at Rice University, Zhejiang University, Los Alamos National Laboratory, Florida State University and the Max Planck Institute adds to the growing body of evidence supporting ...

Scaling up armor systems

Jan 30, 2015

Dermal modification is a significant part of evolution, says Ranajay Ghosh, an associate research scientist in the College of Engineering. Almost every organism has something on its skin that provides important ...

Seeking cracks in the Standard Model

Jan 30, 2015

In particle physics, it's our business to understand structure. I work on the Large Hadron Collider (LHC) and this machine lets us see and study the smallest structure of all; unimaginably tiny fundamental partic ...

The first optically synchronised free-electron laser

Jan 30, 2015

Scientists at DESY have developed and implemented an optical synchronisation system for the soft X-ray free-electron laser FLASH, achieving facility-wide synchronisation with femtosecond precision. The performance ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.