Fish species stay alive on land with special skin

November 5, 2010 By Kevin Stacey
The mangrove killifish or mangrove rivulus. Image via Wikipedia.

(PhysOrg.com) -- A new study shows how an amphibious fish stays alive for up to two months on land. It's all in the skin.

Mangrove killifish are small fish, only about an inch or two long, that live in temporary pools in the coastal mangrove forests of Central and and Florida. During dry seasons when their pools disappear, the fish hole up in leaf litter or hollow logs. As long as they stay moist, they can survive for extended periods out of water by breathing air through their . But isn’t the only thing a fish out of water needs to worry about, according to Professor Patricia Wright, a biologist from the University of Guelph, Ontario, who has studied these fish for years.

“All cells in the body need the right combination of ions and water for an animal to stay alive,” Wright explains. “Normally, the gills are responsible for these processes in fish. We knew that in mangrove killifish the gills are likely useless on land, so how these fish maintain ion balance out of water was a mystery.”

Wright’s latest research, published in the November/December 2010 issue of the journal Physiological and Biochemical Zoology, shows that the skin of the mangrove killifish picks up the slack for the gills.

Through a series of laboratory experiments, Wright and her team found special cells called ionocytes clustered on the skin of the fish. Ionocytes, normally found on the gills of other fish, are the cells responsible for maintaining the right balance of water and salt in a fish’s cells.

“We found the mangrove killifish have roughly as many ionocytes on their skin as on their gills,” Wright said. Other fish species have skin ionocytes in larval stages of development, but usually these cells disappear in the skin as the fish develops.

To show that these skin ionocytes were doing the job, the researchers took some mangrove killifish out of water for a period of 9 days. During that time, the fish were left on a surface moist with water containing a radioactive isotope. The researchers found that the isotope eventually turned up in the fish’s body.

“It’s very clear they’re exchanging ions through the skin,” Wright said.

The skin of the mangrove killifish is also equipped to help the fish deal with varying salinity, the research found. When out-of-water fish were placed on a surface moist with salt water, the skin ionocytes got bigger, indicating that they’re working overtime to keep the right salt balance. When those fish were placed back in water, the skin ionocytes returned to normal size.

It’s adaptations like this, Wright says, that make this fish special—even among amphibious . Lungfish, for example, need to alter their physiological state to live out of water. But with its special skin, mangrove killifish can maintain all of their normal physiological processes at nearly the same level as being in —and they can do it for over 60 days.

“They really are very interesting little animals,” Wright said.

Explore further: Killifish can adapt to life in a tree

More information: Danielle M. LeBlanc, et al. "A Fish Out of Water: Gill and Skin Remodeling Promotes Osmo- and Ionoregulation in the Mangrove Killifish Kryptolebias marmoratus." Physiological and Biochemical Zoology 83:6.

Related Stories

Killifish can adapt to life in a tree

October 19, 2007

Biologists in Belize and Florida have discovered that the mangrove killifish lives in trees when the water they usually live in has disappeared.

Scientist describes toothy microfossils

October 29, 2010

They had rows of sharp, interlocking conical teeth that, while not affixed to a jaw like we know, would rake prey into their mouths kind of like the creature in the movie "Alien."

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.