Fish gelatin: Ultra-high-tech biomedical uses ahead?

Nov 08, 2010

Natural gelatin, extracted from the shiny skin of a seagoing fish called Alaskan pollock, may someday be put to intriguing new biomedical uses. US Department of Agriculture (USDA) chemist Bor-Sen Chiou is developing strong yet pliable sheets, known as films or membranes, that might be made from a blend of gelatin from the fish skins and a bioplastic called polylactic acid or PLA that's produced from fermented corn sugar.

The fish- and corn-derived films might be suitable for use commercially in tissue-engineering laboratories that would produce semi-synthetic tissue for repair of injured bone or cartilage, for example. That might speed patients' recovery times, given that damaged bone and cartilage are often slow to form tissue needed for self-repair.

Chiou is testing the experimental films in his laboratory at the Agricultural Research Service (ARS) Western Regional Research Center in Albany, Calif. ARS is the USDA's chief intramural scientific research agency.

At the Albany center, Chiou and colleagues use an ultra-high-tech process known as "electrospinning" to literally spin together the fish gelatin and the polylactic acid to form slender, submicroscopic fibers. When amassed, these nanofibers form sheets of a milky white film or membrane.

In tomorrow's tissue-engineering labs, the films could be "seeded" with cultures of human cells. The nanofibers would provide the infinitesimally small scaffolding or support matrices upon which the cells could replicate. Later, the tissue resulting from the replicating could be used as transplants.

The fish-and-PLA membranes are not expected to pose problems such as allergic reactions. Some surgically implanted medical devices already in use today are made of PLA, or contain components made of PLA.

Chiou and his colleagues–chemist Roberto Avena-Bustillos and technicians Haani Jafri and Tina Williams–may be the first to use a blend of fish gelatin and corn-derived plastic to make next-generation nanofibers. They are collaborating in the research with food technologists Peter J. Bechtel and Cynthia K. Bower of the ARS Subarctic Agricultural Research Unit in Kodiak, Alaska, in seeking new uses for fish skins and other leftovers from Alaska's fish-processing plants.

Explore further: A new synthetic amino acid for an emerging class of drugs

Provided by United States Department of Agriculture

3 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Helping corn-based plastics take more heat

Sep 01, 2010

A team of scientists from USDA and a cooperating company are working to make corn-derived plastics more heat tolerant -- research that may broaden the range of applications for which these plastics could be used as an alternative ...

Alternative fish feeds use less fishmeal and fish oils

Oct 13, 2010

As consumers eat more fish as part of a healthy diet, U.S. Department of Agriculture (USDA) scientists are helping producers meet this demand by developing new feeds that support sustainable aquaculture production.

Helping fish get rid of the 'Ich'

Oct 28, 2010

Copper sulfate has emerged as an effective treatment for Ichthyophthirius multifiliis, also known as "Ich," a protozoan parasite that appears as white spots on infected fish, according to a U.S. Department of Agriculture ...

Vaccines could help what's ailing fish

Oct 22, 2010

U.S. Department of Agriculture (USDA) scientists are developing vaccines to help protect healthy farm-raised catfish against key diseases.

Recommended for you

A new synthetic amino acid for an emerging class of drugs

Aug 31, 2014

Swiss scientists have developed a new amino acid that can be used to modify the 3-D structure of therapeutic peptides. Insertion of the amino acid into bioactive peptides enhanced their binding affinity up to 40-fold. Peptides ...

Protein glue shows potential for use with biomaterials

Aug 28, 2014

Researchers at the University of Milan in Italy have shown that a synthetic protein called AGMA1 has the potential to promote the adhesion of brain cells in a laboratory setting. This could prove helpful ...

User comments : 0