Explorer of the 'Cool Universe'

Nov 18, 2010
Stellar pregnancy and birth in the Milky Way. Credit: ESA/HiGAL Cosortium.

(PhysOrg.com) -- Emory astrochemist Susanna Widicus Weaver will soon begin one of the first broad spectral surveys of small organic molecules in deep space. Her lab's research proposal - to search for the raw materials of life in star-forming regions - recently won 42 hours of observing time on the Herschel Space Observatory.

“The process for applying is incredibly competitive, and 42 hours is a huge amount of time, so we’re ecstatic,” Weaver said. “I actually watched the instrument evolve over the past 10 years, so I have to pinch myself that this is actually happening.”

Astrochemistry draws on astronomy, laboratory spectroscopy and chemical modeling to study chemical mechanisms in space. Weaver is skilled in all three of these specialized areas.

As a graduate student at Caltech, she would visit the NASA Jet Propulsion Laboratory and marvel at the technology going into building the Herschel instruments. Headed by the European Space Agency, Herschel became the largest telescope in space when it launched last year. The scope’s 3.5 meter-diameter mirror offers an unprecedented view of the “cool universe,” the domain of objects like tiny stars and molecular clouds that barely emit light. It may not seem as glamorous as looking for new planets, but scientists believe that the cool universe holds secrets for how life forms. Herschel operates in the far-infrared range, penetrating the veil of gas and dust shrouding these cooler realms by bridging the gap between infrared and radio astronomy.

Weaver’s research is focused on that gap, in the terahertz frequency range. At Emory, she is developing the technology to search for the building blocks of life in this largely unexplored area of . Students are helping her build a high-sensitivity spectrometer to record the terahertz transmission frequency of transient molecules that are key building blocks to forming simple molecules of sugars and amino acids.

Artist's impression of the Herschel space telescope, which is revealing a surprising array of activity in cold, dark regions where interstellar material condenses. Credit: ESA, D. Ducros.

Weaver theorizes that these transient molecules are present in deep space. On Earth, however, they are unstable, existing only for the blink of an eye. So Weaver is developing methods to make the molecules and keep them stable in a laboratory environment. Using spectroscopy to record the spectral “fingerprints” of the molecules gives the lab a guide to search for them in space.

Weaver and her students are frequent visitors to the Caltech Submillimeter Observatory on the Mauna Kea volcano of the Big Island of Hawaii, where they acquire terahertz spectra with a 10.4-meter radio astronomy dish. This dish is a powerful device, situated in a high, dry and dark location, but observations are still hampered by the Earth’s atmosphere, which blocks most far-infrared wavelengths, while also producing its own far-infrared radiation. Observing terahertz radiation from the ground is like trying to see stars on a cloudy night.

“That’s the reason that the Herschel telescope is so incredible. This is the first time we can observe molecules in the terahertz range from space,” Weaver says.

Weaver and her students will use their time on the Herschel observatory to search for a range of simple molecules that they have identified as key to prebiotic pathways in interstellar chemistry, such as acetic acid, methyl formate, glycolaldehyde and methanol.

“Most previous observations have targeted a few specific molecules, but we want to open that up and get a better idea of the average composition of the clouds in star-forming regions,” Weaver explains.

Explore further: POLARBEAR detects curls in the universe's oldest light

add to favorites email to friend print save as pdf

Related Stories

Herschel spacecraft assembly complete

Apr 23, 2008

The mirror of the Herschel telescope has now been assembled with the payload and service module, completing the spacecraft structure - an important milestone in the days following through to launch.

Cool spacedust survey goes into orbit

Feb 01, 2008

University of Nottingham astronomers will be studying icy cosmic dust millions of light years away — using the biggest space telescope ever built.

Mining for Molecules in the Milky Way

Jun 02, 2008

Scientists are using the giant Robert C. Byrd Green Bank Telescope (GBT) to go prospecting in a rich molecular cloud in our Milky Way Galaxy. They seek to discover new, complex molecules in interstellar space ...

Recommended for you

Big black holes can block new stars

19 hours ago

Massive black holes spewing out radio-frequency-emitting particles at near-light speed can block formation of new stars in aging galaxies, a study has found.

POLARBEAR seeks cosmic answers in microwave polarization

19 hours ago

An international team of physicists has measured a subtle characteristic in the polarization of the cosmic microwave background radiation that will allow them to map the large-scale structure of the universe, ...

New radio telescope ready to probe

22 hours ago

Whirring back and forth on a turning turret, the white, 40-foot dish evokes the aura of movies such as "Golden Eye" or "Contact," but the University of Arizona team of scientists and engineers that commissioned ...

Exomoons Could Be Abundant Sources Of Habitability

Oct 20, 2014

With about 4,000 planet candidates from the Kepler Space Telescope data to analyze so far, astronomers are busy trying to figure out questions about habitability. What size planet could host life? How far ...

Partial solar eclipse over the U.S. on Thursday, Oct. 23

Oct 17, 2014

People in most of the continental United States will be in the shadow of the Moon on Thursday afternoon, Oct. 23, as a partial solar eclipse sweeps across the Earth. For people looking through sun-safe filters, from Los Angeles, ...

User comments : 0