Keeping the daily clock ticking in a fluctuating environment: Hints from a green alga

November 11, 2010

Researchers in France have uncovered a mechanism which explains how biological clocks accurately synchronize to the day/night cycle despite large fluctuations in light intensity during the day and from day to day. Following the identification of two central "clock genes" of a green alga, Ostreococcus tauri, a mathematical model reproducing their daily activity profiles has revealed that their internal clock is influenced by the naturally varying light levels throughout the day only at periods when it needs resetting.

The results found by the biologists at Oceanologic Observatory of Université Paris 6 in Banyuls, France, physicists at Université Lille 1, France, together with the Centre National de la Recherche Scientifique, are published November 11 in the open-access journal PLoS Computational Biology.

Circadian clocks keep track of time in many living organisms, allowing them to anticipate environmental changes induced by day/night alternation. They consist of networks of and proteins which interact to generate biochemical oscillations with a period close to 24 hours. Exact synchronization to the day/night cycle requires that some clock components sense daylight. Ostreococcus has evolved a simple but effective strategy to shield the circadian clock from interference caused by fluctuations in the levels of daylight by limiting sensitivity to light to specific times of day. In the authors' model, as in experiments, this ability is furthermore inactivated when the clock is in phase with the day/night cycle but resets the clock when it is out of phase. Such a clock architecture is immune to strong daylight fluctuation such as due to cloud cover.

Light sensing is assumed to be activated only when the core oscillator controlling the biological clock is blind to perturbations and variations. As anyone who has pushed a swing knows, the response of a periodic motion to a perturbation depends indeed very much on the timing; pushing a swing mid-arc doesn't achieve much. With this simple trick, the clock is insensitive to light and its fluctuations when it is on time. However, if the clock becomes out of phase, it will be subjected to light at a different time of its cycle, and respond to the perturbation so as to be reset to the correct time.

Explore further: Mammals, fruit flies: same biological clock

More information: Thommen Q, Pfeuty B, Morant P-E, Corellou F, Bouget F-Y, et al. (2010) Robustness of Circadian Clocks to Daylight Fluctuations: Hints from the Picoeucaryote Ostreococcus tauri. PLoS Comput Biol 6(11): e1000990. doi:10.1371/journal.pcbi.1000990

Related Stories

Internal clock, external light regulate plant growth

July 9, 2007

Most plants and animals show changes in activity over a 24-hour cycle. Now, for the first time, researchers have shown how a plant combines signals from its internal clock with those from the environment to show a daily rhythm ...

Circadian clock controls plant growth hormone

August 13, 2007

The plant growth hormone auxin is controlled by circadian rhythms within the plant, UC Davis researchers have found. The discovery explains how plants can time their growth to take advantage of resources such as light and ...

Team creates math model for circadian rhythm

August 27, 2007

The internal clock in living beings that regulates sleeping and waking patterns -- usually called the circadian clock -- has often befuddled scientists due to its mysterious time delays. Molecular interactions that regulate ...

To Arctic animals, time of day really doesn't matter

March 11, 2010

In the far northern reaches of the Arctic, day versus night often doesn't mean a whole lot. During parts of the year, the sun does not set; at other times, it's just the opposite. A new study reported online on March 11th ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.