Bees reveal nature-nuture secrets

Nov 02, 2010
A honeybee queen surrounded by her retinue. Image: Helga Heilmann. doi:10.1371/journal.pbio.1000532.g001

The nature-nurture debate is a "giant step" closer to being resolved after scientists studying bees documented how environmental inputs can modify our genetic hardware. The researchers uncovered extensive molecular differences in the brains of worker bees and queen bees which develop along very different paths when put on different diets.

The research was led by Professor Ryszard Maleszka of The Australian National University's College of Medicine, Biology and Environment, working with colleagues from the German Cancer Institute in Heidelberg, Germany and will be published next week in the online, open access journal .

Their work reveals for the first time the intricacies of the environmentally-influenced chemical 'marking of DNA' called , which has the capacity to alter without affecting the – a process referred to as 'epigenetic', or above the genome.

"This marking determines which genes are to be fine-tuned in the brains of workers and queens to produce their extraordinarily different behaviours. This finding is not only crucial, but far reaching, because the enzymes that mark DNA in the bee are also the enzymes that mark DNA in human brains," said Professor Maleszka.

"In the , more than 550 genes are differentially marked between the brain of the queen and the of the worker, which contributes to their profound divergence in behaviour. This study provides the first documentation of extensive molecular differences that may allow honey bees to generate different reproductive and behavioural outcomes as a result of differential feeding with royal jelly."

Professor Maleszka said that the work goes a long way to answering one of life's biggest questions.

"This study represents a giant step towards answering one of the big questions in the nature-nurture debate, because it shows how the outside world is linked to DNA via diet, and how environmental inputs can transiently modify our genetic hardware," he said.

"Similar studies are impossible to do on human brains, so the humble honey bees are the pioneers in this fascinating area."

Explore further: Pollen on birds shows feeding grounds

More information: Lyko F, Foret S, Kucharski R, Wolf S, Falckenhayn C, et al. (2010) The Honey Bee Epigenomes: Differential Methylation of Brain DNA in Queens and Workers. PLoS Biol 8(11): e1000506. doi:10.1371/journal.pbio.1000506

Related Stories

Royal jelly makes bee queens, boosts nurture case

Mar 14, 2008

New Australian National University research may explain why eating royal jelly destines honeybee larvae to become queens instead of workers – and in the process adds new weight to the role of environmental factors in the ...

Honey-bee aggression study suggests nurture alters nature

Aug 17, 2009

A new study reveals that changes in gene expression in the brain of the honey bee in response to an immediate threat have much in common with more long-term and even evolutionary differences in honey-bee aggression. ...

Honey bee genome holds clues to social behavior

Oct 23, 2006

By studying the humble honey bee, researchers at the University of Illinois at Urbana-Champaign have come a step closer to understanding the molecular basis of social behavior in humans.

The biochemical buzz on career changes in bees

Apr 06, 2009

Adults facing unexpected career changes, take note. Scientists from Brazil and Cuba are reporting that honey bees — a mainstay for behavioral research that cannot be done in other animals — change their ...

Honey bee chemoreceptors found for smell and taste

Oct 25, 2006

Honey bees have a much better sense of smell than fruit flies or mosquitoes, but a much worse sense of taste, according to researchers at the University of Illinois at Urbana-Champaign.

Recommended for you

Calcium and reproduction go together

11 hours ago

Everyone's heard of the birds and the bees. But that old expression leaves out the flowers that are being fertilized. The fertilization process for flowering plants is particularly complex and requires extensive communication ...

User comments : 0