Astrophysicists discover new galaxy clusters revealed by cosmic 'shadows'

Nov 01, 2010
Four Atacama Cosmology Telescope (ACT) images of cosmic background radiation, top row, with dark blue colors indicating "shadows" cast by galaxy clusters. Below, four optical images of the galaxy clusters, with white contour lines corresponding to the cosmic background radiation intensity levels in the ACT images. Credit: top row: Tobias Marriage, Johns Hopkins University, Princeton University. Bottom matrix: Felipe Menanteau, Rutgers University

An international team of scientists led by Rutgers University astrophysicists have discovered 10 new massive galaxy clusters from a large, uniform survey of the southern sky. The survey was conducted using a breakthrough technique that detects "shadows" of galaxy clusters on the cosmic microwave background radiation, a relic of the "big bang" that gave birth to the universe.

In a paper published in the Nov. 10 issue of , the Rutgers scientists and collaborators at the Pontifical Catholic University of Chile (PUC) describe their visual telescope observations of these galaxy clusters, which were essential to verify the cosmic shadow sightings. Both observations will help scientists better understand how the universe was born and continues to evolve.

The research began in 2008 with a new radio telescope in the Atacama Desert of Chile – one of the driest places on Earth. The instrument, known as the Atacama Cosmology Telescope (ACT), collects millimeter-length radio waves that reveal images of the otherwise invisible cosmic background radiation. Millimeter waves are easily blocked by water vapor, hence the telescope's home high in the Andes Mountains of northern Chile, where there is barely any atmospheric moisture.

"The groundbreaking observations at Atacama, led by Lyman Page of Princeton University, surveyed large areas of the sky to reveal shadows that pointed astronomers to these previously unseen clusters," said Felipe Menanteau, a research scientist in physics and astronomy, School of Arts and Sciences, at Rutgers.

Theorists Rashid Sunyaev and Yakov Zel'dovich predicted the shadow phenomenon 40 years ago, now known as the Sunyaev-Zel'dovich effect, or S-Z effect. Shortly thereafter astronomers verified it by observing shadows cast by previously known galaxy clusters. The higher sensitivity and resolution of ACT now makes it practical for astronomers to essentially reverse the procedure – to search the cosmic background radiation for shadows that indicate the presence of unseen clusters.

The Atacama Cosmology Telescope (ACT) in the Atacama Desert of northern Chile, with Cerro Toco volcanic peak in the background. Astronomers conducted a large, uniform survey of the southern sky with ACT, using a breakthrough technique that detects "shadows" of galaxy clusters on the cosmic microwave background radiation. The shadows pointed astronomers to previously unseen massive galaxy clusters. Credit: Adam Hincks, Princeton University, University of Toronto

"The 'shadows' that ACT revealed are not shadows in the traditional sense, as they are not caused by the galaxy clusters blocking light from another source," said Jack Hughes, professor of physics and astronomy at Rutgers. "Rather, the hot gases within the galaxy clusters cause a tiny fraction of the cosmic background radiation to shift to higher energies, which then makes them appear as shadows in one of ACT's observing bands."

was first observed by two Bell Labs astronomers in New Jersey back in the 1960s, a discovery that earned them the Nobel Prize in Physics in 1978.

Hughes and Menanteau worked with Chilean professors Leopoldo Infante and Felipe Barrientos to collect optical images of dozens of candidates, which led to the discovery of ten entirely new massive . The Rutgers and PUC team, which also included PUC undergraduate student Jorge González, worked on two optical telescopes in Chile over the course of seven nights during October and December of 2009.

"We knew the experiment was working when we could see the giant clusters clearly, even in the raw images as they came through the telescope," said Menanteau.

"The technical challenges involved in exploiting the S-Z technique are daunting, and it is fantastic to see this method working so well," said Priyamvada Natarajan, professor of astronomy and physics at Yale University and a leading theoretical cosmologist not affiliated with the study. "It will build our inventory of the most massive and distant clusters in the universe, which will provide important constraints on the currently accepted cosmological model. I am personally excited to see the large number of strong lensing clusters that ACT is turning up."

Explore further: A sharp eye on Southern binary stars

Related Stories

Studying Matter and Radiation from the Early Universe

Apr 12, 2010

(PhysOrg.com) --Almost 400,000 years after the universe was created in the big bang, matter cooled sufficiently for neutral atoms to form, thereby allowing the pervasive light to propagate almost completely ...

Planck Satellite ready to measure the Big Bang

May 11, 2009

(PhysOrg.com) -- The last tests of the Ariane 5 rocket system have been finished and ESA's Planck satellite is sitting ready for launch at the Guiana Space Centre in Kourou. Together with ESA's space telescope ...

Astronomers Find Hundreds of Young, Distant Galaxy Clusters

Jun 06, 2006

Astronomers have found the largest number of the most distant, youngest galaxy clusters yet, a feat that will help them observe the developing universe when it was less than half its current age and still in its formative ...

Massive galaxy cluster found 10 billion light years away

Jun 06, 2006

A University of Sussex astronomer is the lead researcher for a project that has led to the discovery of the most distant cluster of galaxies observed to date. The cluster, which is 10 billion light years from Earth, is also ...

Recommended for you

A sharp eye on Southern binary stars

1 hour ago

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

2 hours ago

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Cosmologists weigh cosmic filaments and voids

5 hours ago

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

DamienS
not rated yet Nov 02, 2010
Very nice. Yet another technique in our observational armory.
Thecis
not rated yet Nov 02, 2010
Absolutely. This also means that we can apparantly trace a lot of "lost mass". A heavy cluster will certainly contribute some percentage :)
GreyLensman
not rated yet Nov 02, 2010
Very nice - does anyone know what a typical angular size of the "shadows" is?
yyz
not rated yet Nov 02, 2010
"does anyone know what a typical angular size of the "shadows" is?"

Different techniques can vary the average apparent size of galaxy clusters but are on the order of of a few minutes of arc or smaller.

This technique should lead astronomers to early massive galaxy clusters hard to detect by other means, and shows much potential.

A fourth, known galaxy cluster, Abell 520, was also studied in this paper, available here: http://arxiv.org/...96v2.pdf

More news stories

Rosetta instrument commissioning continues

We're now in week four of six dedicated to commissioning Rosetta's science instruments after the long hibernation period, with the majority now having completed at least a first initial switch on.

A sharp eye on Southern binary stars

Unlike our sun, with its retinue of orbiting planets, many stars in the sky orbit around a second star. These binary stars, with orbital periods ranging from days to centuries, have long been the primary ...

Hubble image: A cross-section of the universe

An image of a galaxy cluster taken by the NASA/ESA Hubble Space Telescope gives a remarkable cross-section of the Universe, showing objects at different distances and stages in cosmic history. They range ...

Astronaut salary

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects—such as going on spacewalks, moving robotic arms and doing science ...

Tiny power plants hold promise for nuclear energy

Small underground nuclear power plants that could be cheaper to build than their behemoth counterparts may herald the future for an energy industry under intense scrutiny since the Fukushima disaster, the ...

Unraveling the 'black ribbon' around lung cancer

It's not uncommon these days to find a colored ribbon representing a disease. A pink ribbon is well known to signify breast cancer. But what color ribbon does one think of with lung cancer?