Air flows in mechanical device reveal secrets of speech pathology

Nov 21, 2010

From a baby's first blurted "bowl!'" for the word "ball" to the whispered goodbye of a beloved elder, the capacity for complex vocalizations is one of humankind's most remarkable attributes -- and perhaps one we take for granted most of our lives.

Not so for people who are afflicted with paralysis to their and who suffer the of affected speech. Nor so for engineering professor Michael Plesniak and post-doctoral researcher Byron Erath at the George Washington University (GWU) Biofluid Dynamics Laboratory In Washington, D.C., and their colleague professor Sean Peterson at the University of Waterloo. To them, the ability to vocalize is such a prized ability that they have built a of human vocal folds.

Today at the American Physical Society Division of (DFD) meeting in Long Beach, CA, the researchers are reporting their discovery of how asymmetrical impacts normal and diseased vocal fold motion -- observations that may lead to new devices to help those who cannot take for granted their ability to vocalize.

"Potential application of this finding includes assisting otolaryngologists to optimize surgical procedures to correct vocal fold paralysis with an implant that changes the position of the damaged vocal fold," Plesniak says.

Vocal folds, commonly known as vocal cords, are the vibrating structures of the phonatory process that stretch across the , and are driven by air expelled from the lungs. Variability in the physics of sound production from the vocal folds can mark the difference between communication that connects people and enriches their lives and speech so impaired it isolates and estranges.

In the GWU team's most recent investigation, they found that asymmetric flow develops when there is an adverse pressure gradient. Under these conditions, the glottal jet separates from one vocal fold and attaches to the opposing one, disrupting the pressure forces that drive vocal fold motion. This change can have devastating impacts on speech.

"In the past, many investigators have assumed air flow is symmetrical over the vocal folds," explains Erath. "We've discovered that this is not always the case."

While most people's vocal folds tolerate the asymmetry very well, the degree of asymmetry becomes especially important in speech pathologies where tissue stiffness is affected by diseases such as unilateral vocal fold . In these cases, the asymmetric flow interacts with the damaged vocal fold, causing chaotic irregular vibrations.

Data from the GWU team suggests that devising an implant material with tissue properties that mimic those of the voice apparatus is key to restoring the good vibrations that are the foundation of intelligible speech.

Explore further: Could 'Jedi Putter' be the force golfers need?

More information: The presentation "The impact of asymmetric flows on pathological speech is on Sunday, November 21, 2010. Abstract: meetings.aps.org/Meeting/DFD10/Event/132273

Provided by American Institute of Physics

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

A mechanical model of vocalization

Nov 23, 2009

When people speak, sing, or shout, they produce sound by pushing air over their vocal folds -- bits of muscle and tissue that manipulate the air flow and vibrate within it. When someone has polyps or some other problem with ...

Jet engines help solve the mysteries of the voice

Mar 13, 2007

Although scientists know about basic voice production—the two "vocal folds" in the larynx vibrate and pulsate airflow from the lungs—the larynx is one of the body's least understood organs.

Vocal cord dysfunction may be caused by work

Sep 06, 2007

Researchers from the UAB and the Vall d'Hebron Hospital have diagnosed two patients affected with vocal cord dysfunction, which causes coughing and difficulty in breathing due to irritating agents that are breathed in at ...

A sing-song way to a cure for speech disorder

Oct 04, 2010

Hindustani singing, a North Indian traditional style of singing, and classical singing, such as the music of Puccini, Mozart and Wagner, vary greatly in technique and sound. Now, speech-language pathology ...

Superfast muscles in songbirds

Jul 09, 2008

Certain songbirds can contract their vocal muscles 100 times faster than humans can blink an eye – placing the birds with a handful of animals that have evolved superfast muscles, University of Utah researchers ...

Recommended for you

Could 'Jedi Putter' be the force golfers need?

Apr 18, 2014

Putting is arguably the most important skill in golf; in fact, it's been described as a game within a game. Now a team of Rice engineering students has devised a training putter that offers golfers audio, ...

Better thermal-imaging lens from waste sulfur

Apr 17, 2014

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

User comments : 0

More news stories