Predictions of upcoming winners for Nobel Prize in physics

October 1, 2010 By Phillip F. Schewe, ISNS

The announcement of the winners of the next Nobel Prize in Physics on Tuesday morning will bring to an end the very private deliberations within the Swedish Academy, which selects the winner. It will also end the rampant public speculation about who will win the prize -- at least until next year.

In anticipation of that announcement, generally recognized as the highest achievement in the field of physics, the American Institute of Physics conducted a poll last week to tap into some of the speculation about who ought to win.

Posted to several websites frequented by physicists, the anonymous poll asked respondents to choose which noteworthy discovery in physics was likely to win the next prize. The list included 15 Nobel-worthy topics, along with the names of scientists associated with those topics. Respondents were also able to write in a discovery that was not on the list.

While the results are not scientific, they are revealing. Of the 320 people casting votes, most voted for experimental rather than for theoretical work.

The top discoveries were as follows:

For the development of the LED laser, Nick Holonyak; Shuji Nakamura, blue laser; Robert Hall, first semiconductor laser. These technical developments all have had enormous practical value. LED lasers, for instance, are mounted in most grocery scanners and CD players. (15.9% of the vote).

For studies of weird quantum properties, such as nonlocality, entanglement, decoherence, and atom optics (Alan Aspect, Serge Harouche, Anton Zeilinger, Charles Bennett, Anton Zurek, David Pritchard, Joerg Schmiedmayer, David Wineland, Peter Zoller). Experiments by these scientists tend to uphold all the counter-intuitive predictions of , such as the idea that an atom can be in two places at the same time. (11.6% of the vote).

For discovering graphene (Andre Geim and Kostya Novoselov). Discovered only a few years ago, graphene is a form of carbon consisting of one-atom-thick sheets. Already the subject is one of the most active in all of condensed matter physics because of graphene’s properties, such as its high conductivity and its great mechanical strength. Many scientists expect graphene to play a large role in electronics. (11.3% of the vote).

For discovering and developing carbon nanotubes (Sumio Iijima, Cees Dekker, Phaeton Avouris, Charles Lieber, Thomas Ebbeson). Still another form of carbon list makes it onto the list. Carbon nanotubes are soda-straw-shaped tubes of carbon, sometimes only a billionth of a meter wide and a few thousandths of a meter in length. Like their flat-sheet cousin graphene, they too have useful properties. Carbon nanotubes can be made to be conducting of electricity or semi-conducting, and are excellent conductors of heat. They too are strong and might one day be used to make components for electrical devices. (10% of the vote).

For predicting, discovering, and developing negative-index metamaterials (Victor Veselago, John Pendry, David Smith, Xiang Zhang, Sheldon Schultz, Ulf Leonhardt). Metamaterials are often structured from tiny components, such as tiny rings and rods. They produce novel optical effects. They are expected to find applications as lenses, in microscopy, and even in rendering some objects invisible, a process called “cloaking.” (8.8% of the vote).

For developing chaos theory (Mitch Feigenbaum, Edward Ott, James Yorke, Celso Grebogi, Harry Swinney, Benoit Mandelbrot). Chaos is the science that describes how our knowledge of some systems in nature quickly degrades. The weather is a classic example of a chaotic system. Even when we measure atmospheric conditions accuracy in many places, our ability to predict future weather remains poor. (8.4% of the vote).

For discovering and developing photonic crystals (Eli Yablonovitch, Shawn Lin, John Joannopoulis). A photonic crystal is to optics what a semiconductor is to electronics. A photonic crystal allows only light of certain energies to propagate. (5.9% of the vote).

For detecting the accelerating cosmic expansion (Adam Riess, Saul Perlmutter, Brian Schmitt). Measurements of distant supernovas has led astronomers to believe that the cosmic expansion of the universe is not slowing or reversing, but actually accelerating. (5.6% of the vote).

For discovering extrasolar planets (Alexsander Wolszczan, Dale Frail, Paul Butler, Geoffrey Marcy, Michael Mayor, Didier Queloz, David Lathan). The development of a supremely sensitive form of spectroscopy allowed astronomers to detect (at first indirectly and later directly) the presence of planets around nearby stars. (4.7% of the vote).

For the discovery of the top quark (Paul Grannis, Mel Schocket, William Carruthers). Nobels have been awarded for the discoveries of some other quarks, so why not also the top? (4.4% of the vote).

Explore further: Professor scoops top prize for 2D atomic crystals discovery

More information: View Poll Results Here:

Related Stories

Professor scoops top prize for 2D atomic crystals discovery

October 19, 2006

Professor Andre Geim of the School of Physics and Astronomy has been awarded the 2007 Mott Medal and Prize by the Institute of Physics for his ground-breaking work. The research of Professor Geim, Dr Kostya Novoselov and ...

Unzipping Carbon Nanotubes Can Make Graphene Ribbons

April 20, 2009

( -- By "unzipping" carbon nanotubes, researchers have shown how to make flat graphene ribbons. Graphene, which is a one-atom-thick sheet of carbon that looks like chicken wire, has unique electrical properties ...

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 01, 2010
LED Laser over Graphene?

not rated yet Oct 01, 2010
LED Laser over Graphene?


The key words are - "Discovered only a few years ago". They've hardly "scratched the surface" so to speak with graphene.
not rated yet Oct 01, 2010
What, no mention of AWT or neutron repulsion? I guess there's always next year. ;)
not rated yet Oct 01, 2010
What is weird about that probabilistic theory representing our knowledge is nonlocal? (see maximal entropy random walk) ... weird could be that some physicists consider such theory fundamental - reason not result ...
And personally I would be surprised seeing correlations between Swedish Academy choices and some anonymous polls answered probably mainly by younger scientists ... :)
5 / 5 (44) Oct 01, 2010
What, no mention of AWT or neutron repulsion? I guess there's always next year. ;)

No chance, because the Swedish Nobel Prize Academy is in on the conspiracy against AWT. In fact the only people not in on the conspiracy against AWT are those who believe in AWT, buts that just a coincidence. :)
not rated yet Oct 03, 2010
My vote goes to graphene, because it's simply amazing, but quantum properties also are high on my list. But as Jarek said, I don't expect the logic of the Academy to be anywhere near mine. Theirs is just too complicated for mortal people to comprehend.
5 / 5 (2) Oct 04, 2010
Obama will win for his future work in Physics!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.