Two-sided immune cell could be harnessed to shrink tumors, study shows

Oct 28, 2010 By Karen Kreeger
Sending the right signals to human Th17 cells to break self-tolerance to tumors. Chrystal Paulos PhD, University of Pennsylvania School of Medicine

(PhysOrg.com) -- A recently identified immune cell that directs other cells to fight infection plays a critical role in regulating the immune system in both health and disease. Researchers from the University of Pennsylvania School of Medicine have discovered how a stimulatory molecule and a protein found on the membrane of another immune cell make T helper 17 cells multi-taskers of sorts. Th17 cells protect the body against infection and cancer, but are also culprits in some autoimmune diseases and out-of-control, cancerous cell growth.

This new understanding that Th17 cells manage to play both sides of the fence suggests that targeting or inhibiting the involved protein pathways might be a new way to treat cancer, chronic infection, and some . Previous studies have linked excessive amounts of Th17 cells in the body to such autoimmune diseases as multiple sclerosis, psoriasis, , and Crohn's disease.

First author and postdoctoral fellow Chrystal Paulos PhD; senior author Carl June, MD, professor of Pathology and Laboratory Medicine, and colleagues have found that a protein called inducible costimulator (ICOS) is necessary for the growth and function of human Th17 cells, while CD28, a transmembrane protein on , stops the ICOS signal. What’s more, human Th17 stimulated with ICOS shrank human tumors implanted in a mouse model faster than those stimulated with CD28. The findings appear in this week’s Science Translational Medicine. June is also the Program Director of Translational Research for the Abramson Family Cancer Research Institute at Penn.

These findings were surprising to the researchers given that CD28 has historically been used by investigators to study and expand human Th17 cells. The new data on Th17 cells raises the possibility that the full inflammatory potential of human Th17 cells had not been fully reflected by previous lab studies.

To move this knowledge closer to the clinic, the team also demonstrated that Th17 cells cannot only be expanded to large numbers, but could also be maintained by stimulating them with ICOS proteins. Th17 polarizing cytokines have previously been shown to support Th17 cells from naïve CD4 cells but this is the first demonstration that the ICOS costimulatory molecule used to expand the Th17 cells is important.

Tilting the balance between spurring and suppressing the growth of Th17 cells may be a key to tailoring immunotherapy, a form of cancer treatment. Adoptive transfer of tumor-specific cells expanded with ICOS and polarized to a Th17 cell type might further improve treatment.

These basic findings on Th17 cells in both peripheral and cord blood has broad implications, providing the basis of a new human cancer treatment protocol. T-cell-based therapies that incorporate the ICOS signal are being planned at Penn to treat patients with leukemia.

Explore further: A new target for controlling inflammation? Long non-coding RNAs fine-tune the immune system

Related Stories

T cell discovery shows promise for Type 1 diabetes treatment

Oct 05, 2010

A research team from the University of British Columbia and the Child & Family Research Institute (CFRI) at BC Children's Hospital has identified the role of a type of T cell in type 1 diabetes that may lead to new treatment ...

When helper cells aren't helpful

May 24, 2010

Current research suggests that T helper-type 1 (Th1) cells, previously thought to mediate autoimmunity, may actual inhibit the development of experimental immune encephalomyelitis (EAE), a mouse model of multiple sclerosis ...

Gene regulates immune cells' ability to harm the body

Jul 17, 2009

A recently identified gene allows immune cells to start the self-destructive processes thought to underlie autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis, researchers at Washington University ...

People with Job's syndrome lack specific immune cells

Mar 17, 2008

Scientists have made another major breakthrough--the second in the past year--in understanding a rare immune disorder called Job’s syndrome. Job’s syndrome is characterized by recurrent and often severe bacterial and ...

Recommended for you

Scientists aim to give botox a safer facelift

15 hours ago

New insights into botulinum neurotoxins and their interactions with cells are moving scientists ever closer to safer forms of Botox and a better understanding of the dangerous disease known as botulism. By comparing all known ...

User comments : 0