Swine flu variant linked to fatal cases might have disabled the clearing mechanism of lungs

Oct 22, 2010
Swine flu variant linked to fatal cases might have disabled the clearing mechanism of lungs
Glass slides on which carbohydrates resembling cell surface receptors have been arrayed as micro-spots.

(PhysOrg.com) -- A variant of last year's pandemic influenza linked to fatal cases carried a mutation that enabled it to infect a different subset of cells lining the airway, according to new research. The study, due to be published next week in the Journal of Virology, suggests that the mutant virus could have impaired the lungs' ability to clear out germs. The researchers behind the study, from Imperial College London, the Medical Research Council National Institute for Medical Research and the University of Marburg said the findings highlight the potential for deadlier strains of flu to emerge and spread.

The 2009 pandemic of H1N1 influenza caused thousands of deaths worldwide, but the majority of cases were relatively mild. A variant of the virus carried a mutation termed D222G in a protein on the surface of the virus, and people infected with this variant were more likely to have severe and fatal illness. According to a World Health Organisation report, the D222G mutation was found in less than two in every hundred cases of 2009 pandemic flu, but was responsible for around seven in every hundred deaths.

iruses infect cells by attaching to receptor molecules on the cell surface. Different receptors are present on different cell types, and a virus can only infect cells that have the right receptors for the protein on its own surface.

The new research shows that with the D222G mutation can bind to a broader range of receptors in the airway, including receptors that are present on cells called ciliated cells. These cells, found in the lining of the airway, have hair-like projections called cilia. The cilia sway back and forth to move mucus with trapped particles upward toward the mouth, and this is normally swallowed or coughed up. When ciliated cells become infected, the cilia stop moving and this vital clearance function is impaired. Inhaled viruses and bacteria can then reach the lung more easily, where they can potentially cause .

The mutant virus has an increased capacity to infect ciliated cells, as shown by the collaborating group at the University of Marburg. Infection of the ciliated cells would sabotage the lungs' clearing mechanism and could be one factor that made the D222G mutation more virulent, the researchers suggest.

"This simple mutation, which swapped one building block of a virus protein for another, apparently resulted in a more virulent version of the H1N1 virus," said Professor Ten Feizi from the Department of Medicine at Imperial College London, who led the study. "We think this is at least partly due to the virus being able to bind to different receptors, which allowed it to infect ciliated cells and stop them from clearing out germs.

"If the mutant virus were to acquire the ability to spread more widely, the consequences could be very serious. The study goes to show how important it is that the WHO Global Influenza Surveillance Network continues to monitor closely the emergence of new variants of the flu virus. Even though the 2009 pandemic was relatively mild, it's vital that we handle outbreaks cautiously and stay vigilant. The virus is constantly evolving, and it's possible that a new form as dangerous as the 1918 pandemic could emerge."

Professor Feizi and her team study the receptor specificity of different flu viruses by attaching onto a glass surface a range of different carbohydrates, resembling the receptors present on the surface of airway lining cells. The virus is then incubated on top of the glass surface, and using a fluorescent dye, the researchers can see the receptors on the plate to which the virus binds.

The study builds on earlier work by Professor Feizi and her colleagues which showed that compared with seasonal , the 2009 pandemic virus could bind to a broader range of receptor types. The previous study showed that pandemic flu had some affinity for so-called alpha2-3 receptors, as well as the alpha2-6 receptors favoured by seasonal flu. Now they have shown that this affinity for alpha2-3 receptors is substantially enhanced in cases of with the D222G mutation. Whereas alpha2-6 receptors are found in the nose, throat and upper airway, alpha2-3 receptors are prevalent in the lung but also on ciliated cells throughout the respiratory system.

Explore further: New MRSA superbug emerges in Brazil

More information: Journal reference: Y. Liu et al. "Altered receptor specificity and cell tropism of D222G haemagglutinin mutants from fatal cases of pandemic A(H1N1) 2009 influenza." Journal of Virology, November 2010, Volume 84, Issue 22. jvi.asm.org/cgi/content/abstract/JVI.01639-10v1

Related Stories

Of swine, birds and men -- pandemic H1N1 flu

Feb 01, 2010

Current research suggests that pandemic H1N1 influenza of swine origin has distinct means of transmission from the seasonal flu, yet does not result in the pathogenic severity of avian flu viruses. The related report by ...

Pandemic mutations in bird flu revealed

Jul 09, 2008

Scientists have discovered how bird flu adapts in patients, offering a new way to monitor the disease and prevent a pandemic, according to research published in the August issue of the Journal of General Virology. Highly ...

Recommended for you

Researchers discover target for treating dengue fever

1 hour ago

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Tracking flu levels with Wikipedia

1 hour ago

Can monitoring Wikipedia hits show how many people have the flu? Researchers at Boston Children's Hospital, USA, have developed a method of estimating levels of influenza-like illness in the American population by analysing ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Nik_2213
not rated yet Oct 22, 2010
Did the Swine Flu' vaccination protect against this mutant strain ??

More news stories

Study recalculates costs of combination vaccines

One of the most popular vaccine brands for children may not be the most cost-effective choice. And doctors may be overlooking some cost factors when choosing vaccines, driving the market toward what is actually a more expensive ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...