Space buckyballs thrive, finds NASA Spitzer Telescope

Oct 28, 2010 By Whitney Clavin
An infrared photo of the Small Magellanic Cloud taken by Spitzer is shown here in this artist's illustration, with two callouts. The middle callout shows a magnified view of an example of a planetary nebula, and the right callout shows an even further magnified depiction of buckyballs, which consist of 60 carbon atoms arranged like soccer balls. Image credit: NASA/JPL-Caltech

(PhysOrg.com) -- Astronomers have discovered bucket loads of buckyballs in space. They used NASA's Spitzer Space Telescope to find the little carbon spheres throughout our Milky Way galaxy -- in the space between stars and around three dying stars. What's more, Spitzer detected buckyballs around a fourth dying star in a nearby galaxy in staggering quantities -- the equivalent in mass to about 15 of our moons.

Buckyballs, also known as fullerenes, are soccer-ball-shaped molecules consisting of 60 linked carbon atoms. They are named for their resemblance to the architect Buckminster Fuller's geodesic domes, an example of which is found at the entrance to Disney's Epcot theme park in Orlando, Fla. The miniature spheres were first discovered in a lab on Earth 25 years ago, but it wasn't until this past July that Spitzer was able to provide the first confirmed proof of their existence in space. At that time, scientists weren't sure if they had been lucky to find a rare supply, or if perhaps the cosmic balls were all around.

"It turns out that buckyballs are much more common and abundant in the universe than initially thought," said astronomer Letizia Stanghellini of the National Optical Astronomy Observatory in Tucson, Ariz. "Spitzer had recently found them in one specific location, but now we see them in other environments. This has implications for the chemistry of life. It's possible that buckyballs from outer space provided seeds for life on Earth."

Stanghellini is co-author of a new study appearing online Oct. 28 in the Astrophysical Journal Letters. Anibal García-Hernández of the Instituto de Astrofísica de Canarias, Spain, is the lead author of the paper. Another Spitzer study about the discovery of buckyballs in space was also recently published in the . It was led by Kris Sellgren of Ohio State University, Columbus.

The García-Hernández team found the buckyballs around three dying sun-like stars, called planetary nebulae, in our own galaxy. These cloudy objects, made up of material shed from the dying stars, are similar to the one where Spitzer found the first evidence for their existence.

The new research shows that all the planetary nebulae in which buckyballs have been detected are rich in hydrogen. This goes against what researchers thought for decades -- they had assumed that, as is the case with making buckyballs in the lab, hydrogen could not be present. The hydrogen, they theorized, would contaminate the carbon, causing it to form chains and other structures rather than the spheres, which contain no hydrogen at all. "We now know that fullerenes and hydrogen coexist in planetary nebulae, which is really important for telling us how they form in space," said García-Hernández.

García-Hernández and his colleagues also located buckyballs in a planetary nebula within a nearby galaxy called the Small Magellanic Cloud. This was particularly exciting to the researchers, because, in contrast to the planetary nebulae in the Milky Way, the distance to this galaxy is known. Knowing the distance to the source of the buckyballs meant that the astronomers could calculate their quantity -- two percent of Earth's mass, or the mass of 15 of our moons.

The other new study, from Sellgren and her team, demonstrates that buckyballs are also present in the space between stars, but not too far away from young solar systems. The cosmic balls may have been formed in a , or perhaps between stars.

"It’s exciting to find buckyballs in between stars that are still forming their solar systems, just a comet’s throw away," Sellgren said. "This could be the link between fullerenes in space and fullerenes in meteorites."

The implications are far-reaching. Scientists have speculated in the past that buckyballs, which can act like cages for other molecules and atoms, might have carried substances to Earth that kick-started life. Evidence for this theory comes from the fact that buckyballs have been found in meteorites carrying extraterrestial gases.

" are sort of like diamonds with holes in the middle," said Stanghellini. "They are incredibly stable molecules that are hard to destroy, and they could carry other interesting molecules inside them. We hope to learn more about the important role they likely play in the death and birth of stars and planets, and maybe even life itself."

The little carbon balls are important in technology research too. They have potential applications in superconducting materials, optical devices, medicines, water purification, armor and more.

Explore further: Astronomer confirms a new "Super-Earth" planet

Related Stories

Researchers create DNA buckyballs for drug delivery

Aug 29, 2005

DNA isn't just for storing genetic codes any more. Since DNA can polymerize -- linking many molecules together into larger structures -- scientists have been using it as a nanoscale building material, constructing ...

One Star's Life Ends With A Ring

Aug 19, 2004

A new image from NASA's Spitzer Space Telescope shows the shimmering embers of a dying star, and in their midst a strange doughnut-shaped ring. "Spitzer's infrared vision has revealed what could not be seen before - a m ...

Buckyball aggregates are soluble, antibacterial

Jun 22, 2005

Research offers clues about C60 behavior in natural environments In some of the first research to probe how buckyballs will interact with natural ecosystems, Rice University's Center for Biological and Environmental Nanotechnol ...

Recommended for you

Image: Multicoloured view of supernova remnant

3 hours ago

Most celestial events unfold over thousands of years or more, making it impossible to follow their evolution on human timescales. Supernovas are notable exceptions, the powerful stellar explosions that make ...

Ultra-luminous X-ray sources in starburst galaxies

3 hours ago

Ultra-luminous X-ray sources (ULXs) are point sources in the sky that are so bright in X-rays that each emits more radiation than a million suns emit at all wavelengths. ULXs are rare. Most galaxies (including ...

When a bright light fades

3 hours ago

Astronomer Charles Telesco is primarily interested in the creation of planets and stars. So, when the University of Florida's giant telescope was pointed at a star undergoing a magnificent and explosive death, ...

Image: Horsehead nebula viewed in infrared

4 hours ago

Sometimes a horse of a different color hardly seems to be a horse at all, as, for example, in this newly released image from NASA's Spitzer Space Telescope. The famous Horsehead nebula makes a ghostly appearance ...

The Milky Way's new neighbour

4 hours ago

The Milky Way, the galaxy we live in, is part of a cluster of more than 50 galaxies that make up the 'Local Group', a collection that includes the famous Andromeda galaxy and many other far smaller objects. ...

Image: Hubble sweeps a messy star factory

4 hours ago

This sprinkle of cosmic glitter is a blue compact dwarf galaxy known as Markarian 209. Galaxies of this type are blue-hued, compact in size, gas-rich, and low in heavy elements. They are often used by astronomers ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Graeme
not rated yet Oct 31, 2010
This suggests that it must actually very simple to make Buckyballs given the right environment. Although perhaps the sheer volume of space used may make it impossible to reproduce on earth, but perhaps a a space or moon based factory could make them very cheaply.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.