Size matters in crucial redox reactions

Oct 12, 2010

(PhysOrg.com) -- Particle size has a far more dramatic impact on chemical reactivity than previously thought, according to new research from UC Davis. The results have implications for understanding a wide range of vital chemical reactions, from rusting iron to the origins of life.

The researchers, led by Professor Alexandra Navrotsky, studied the energy changes involved in oxidation and reduction reactions in oxides of . The results were published Oct. 8 in the journal Science.

"Oxidation and reduction reactions are the energy source for most chemistry in nature," said Navrotsky, who directs the Nanomaterials in the Environment, Agriculture and Technology program at UC Davis.

Metals such as iron, manganese, cobalt and nickel can combine with different numbers of to form compounds with different "oxidation states" and properties. Different crystal structures correspond to different oxidation states: metals in the lowest ; an intermediate structure called a spinel; and rock salt oxides at the highest levels of oxidation.

Using very accurate measurement of the energy changes involved in changing from one oxidation state to another, Navrotsky's team made two major discoveries about the relationship between the size of particles and their behavior in oxidation and reduction reactions.

First, they found that the energy of oxidation varies dramatically with particle size, Navrotsky said. Materials made of nanoparticles measured in billionths of an inch behaved quite differently from bulk materials.

"This had not been predicted, nor been thought about before," she said.

The second major finding by Navrotsky's team was that in general, very small particles formed with a lower energy cost for a given metal in the spinel structure compared to other states. That is because the surface energy of the crystal is lowest in the spinel form, allowing smaller particles to form, Navrotsky said.

Because metal oxides are so widespread, the discoveries have wide implications, Navrotsky said. For example, they explain why nanoparticles of wustite, an iron compound, oxidize in exactly the right way to make the heads that read hard disks. They also could lead to new ways to make materials for energy storage or catalysis, and to new understandings of the chemical reactions that powered the first life on Earth.

Navrotsky's co-authors on the study were graduate students Chengcheng Ma and Nancy Birkner and postdoctoral researcher Kristina Lilova.

Explore further: Researcher optimally isolates propylene for commercial use

Related Stories

Calcium carbonate and climate change

Aug 30, 2010

(PhysOrg.com) -- What links sea urchins, limestone and climate change? The common thread is calcium carbonate, one of the most widespread minerals on Earth. UC Davis researchers have now measured the energy changes among ...

Better chemistry through living models

Jun 06, 2007

Scientists at Pacific Northwest National Laboratory will receive $1.98 million from the U.S. Department of Energy over the next three years to emulate nature’s use of enzymes to convert chemicals to energy, PNNL announced ...

An ideal candidate for sustainable catalysis

Sep 16, 2010

(PhysOrg.com) -- The development of environmentally friendly and efficient catalysts is a major challenge in the field of chemical research, with the focus now being placed on the search for inexpensive metal ...

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

SolidStateUniverse
not rated yet Oct 12, 2010
Duh...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.