Silicon whiskers detect neural responses

Oct 27, 2010 By Adarsh Sandhu
Dr Kawano and Fig.1: The 'Toyohashi Probe': An integrated VLS-silicon microprobe. Copyright : Toyohashi University of Technology

Dr. Kawano and colleagues successfully demonstrate the neural recording capability of micrometer sized VLS-silicon wires—'Toyohashi Probe' using the retina of a fish (see Fig.1 and Animation).

In nanotechnology, the so-called vapor-liquid-solid (VLS) method is widely used for synthesizing a variety of one-dimensional wire-structures including carbon nanotubes, and metallic and semiconducting nanowires for fabricating nanodevices.

Although the VLS method enables batch fabrication of out-of-plane vertically aligned micro and nanowires, a potentially powerful device application for measuring multi-site electrical neural signals has yet to be realized due to: (1) the unavailability of an device process for integrating the three-dimensional wire arrays with active devices; (2) inadequacies in the electrical properties of the tiny wires that are used as probes for recording electrical neural signals; and (3) the lack of an appropriate device packaging process that is compatible with saline.

Fig. 2: Light-evoked neural signals of the retina (electro-retinogram (ERG)) measured via two probes. Copyright : Toyohashi University of Technology

Here, Takeshi Kawano, Makoto Ishida and colleagues at the Toyohashi University of Technology, Chukyo University, and RIKEN successfully demonstrate the neural recording capability of micrometer sized VLS-silicon wires—'Toyohashi Probe' using the of a fish (Fig.1 and Animation).

The researchers produced vertically aligned microprobe arrays on a silicon microelectronics substrate by a selective VLS growth of silicon followed by micro-fabrication processing and device packaging. For actual measurements the group placed the retina onto the Toyohashi Probes. These devices successfully detected neural responses representative of local field potentials of the retina (Fig.2).

This video is not supported by your browser at this time.

Toyohashi Probes made by VLS growth show potential as powerful devices for a range of neural recordings because of the advantageous small sizes of the probes and their compatibility LSI electronics.

Explore further: Study reveals new method to develop more efficient drugs

More information: Biosensors and Bioelectronics 25, 1809 (2010)

Related Stories

Recommended for you

Study reveals new method to develop more efficient drugs

18 hours ago

A new study led by University of Kentucky researchers suggests a new approach to develop highly-potent drugs which could overcome current shortcomings of low drug efficacy and multi-drug resistance in the ...

Tiny wires could provide a big energy boost

20 hours ago

Wearable electronic devices for health and fitness monitoring are a rapidly growing area of consumer electronics; one of their biggest limitations is the capacity of their tiny batteries to deliver enough ...

Graphene sheets enable ultrasound transmitters

20 hours ago

University of California, Berkeley, physicists have used graphene to build lightweight ultrasonic loudspeakers and microphones, enabling people to mimic bats or dolphins' ability to use sound to communicate ...

Could black phosphorus be the next silicon?

22 hours ago

As scientists continue to hunt for a material that will make it possible to pack more transistors on a chip, new research from McGill University and Université de Montréal adds to evidence that black phosphorus ...

Project uses crowd computing to improve water filtration

Jul 06, 2015

Nearly 800 million people worldwide don't have access to safe drinking water, and some 2.5 billion people live in precariously unsanitary conditions, according to the Centers for Disease Control and Prevention. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.