Scientists perfect new nanowire technique

Oct 14, 2010
Dewetted DLC HAT-6 on patterned organosilane surfaces with a patterning period of 25 μm. a) and b) the orientation is ±45deg. to the polarisers, c) and d) with the compensator in place. The colour difference indicates that the slow axis lies parallel to the stripe direction. Image credit: Jonathan P. Bramble et al. Advanced Functional Materials.

Scientists at the University of Leeds have perfected a new technique that allows them to make molecular nanowires out of thin strips of ring-shaped molecules known as discotic liquid crystals (DLCs).

The findings could be an important step in the development of next generation electronic devices, such as light-harvesting cells and low-cost biosensors that could be used to test water quality in developing countries.

DLCs are disk-shaped molecules that are one of the more promising candidates for organic electronic devices. However, controlling their alignment has proved challenging to scientists and this has been a major barrier to their use in the liquid crystal display industry and as molecular wires.

"DLC molecules have a tendency to stack on top of each other like a pile of coins," said researcher Professor Stephen Evans from the University of Leeds. "But the difficulty comes in controlling the orientation of such columnar stacks with respect to the surface on which they lie. This is crucial for their future application.

"Traditionally, scientists have tried to get DLCs to align simply by rubbing the surface they sit on with a cloth to create micro grooves. This fairly primitive method works fine for macroscopic areas, but for new generations of devices we need to accurately control how liquid crystal arranges itself on the surface."

The Leeds team, led by Professor Richard Bushby and Professor Evans, has developed a completely novel technique using patterned surfaces to selectively control alignment, allowing them to stack the piles neatly to create molecular 'wires'.

The technique involves printing sheets of gold or silicon with self-assembled monolayers, which can be patterned with 'stripes' of high and low-energy. When a droplet of liquid crystal is applied to this patterned surface and heated, it spontaneously spreads out like liquid fingers over the high-energy stripes, leaving the low-energy regions bare.

Professor Evans said: "Within the stripes we found molecules arranged into hemi-cylindrical columns each several microns long, which we believe to be the highest level of control over DLC alignment to date. We also found that the narrower the stripes, the better the ordered the columns."

The team are hopeful that this level of control could lead to the development of a new type of , which could test for anything that alters the surface properties.

"By changing the surface properties we can get switch between alignments which is very interesting from the point of view or sensing devices," added Professor Evans. "Most biosensors require a backlight to see when a change has occurred, but it is very easy to see when a liquid crystal has changed direction – you just hold it up to the light.

"This opens up great possibilities for the production of very simple and, more importantly, cheap biosensors that could be widely used in the developing world."

The team are now testing the conductivity of these wires in the hope that they could be used for energy transfer in molecular systems. They are also looking at ways to polymerise the wires to make them stronger.

Explore further: Single unlabelled biomolecules can be detected through light

More information: The paper, 'Planar Alignment of Columnar Discotic Liquid Crystals by Isotropic Phase Dewetting on Chemically Patterned Surfaces', is available online at onlinelibrary.wiley.com/doi/10… m.200902140/abstract

Related Stories

Reserchers find new method for manipulating liquid crystals

Feb 11, 2010

(PhysOrg.com) -- A new method for manipulating the molecules of liquid crystals in ways previously unachieved could result in more effective industrial sealants, improved food packaging and even enhanced electronic displays, ...

The Future Is 3-D Liquid Crystals

Jan 15, 2009

(PhysOrg.com) -- Dr. Tim Wilkinson from the Department's Photonics Research Group, University of Cambridge, has made an exciting breakthrough, he has combined liquid crystals with vertically grown carbon nanotubes ...

Recommended for you

Engineers show light can play seesaw at the nanoscale

22 hours ago

University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

For electronics beyond silicon, a new contender emerges

Sep 16, 2014

Silicon has few serious competitors as the material of choice in the electronics industry. Yet transistors, the switchable valves that control the flow of electrons in a circuit, cannot simply keep shrinking ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

AdrianMiller
not rated yet Oct 15, 2010
If anyone’s interested in more on the science behind this story, we’ve set the original research article free to access for the next four weeks; you can find it here: http://www.materi...als.html

Adrian Miller
Advanced Functional Materials