Scientists pinpoint gene linked to drug resistance in malaria

Oct 12, 2010

Scientists have shed light on how malaria is able to resist treatment with a leading drug.

Researchers have identified a gene that enables the parasite that causes the infection to resist treatment with the plant-based remedy artemisinin.

In many countries where the parasite has developed resistance to previously effective common treatments such as , artemisinin remains the only effective treatment against the infection. However, malarial resistance to artemisinin appears to be developing, potentially creating problems in controlling malaria.

Identification of this gene paves the way for further studies that could eventually help control the development of resistance to artemisinin and lead to more effective drugs for human malaria.

The study, by scientists from the University of Edinburgh and the Universidade Nova de Lisboa, used emerging technology to scan the genetic fingerprint of drug resistant parasites that infect rodents. This technology allows rapid identification of that enable the parasite to withstand existing drug treatments.

There are estimated to be between 300 and 500 million cases of malaria each year, occurring in over 90 different countries, according to the World Health Organisation.

Dr Paul Hunt, from the University of Edinburgh's School of Biological Sciences, said: "This knowledge from rodent malaria opens up new directions that will allow this gene to be investigated in human . This may help track the evolution of and may eventually enable the design of alternative, effective drugs."

Explore further: Genetic code of the deadly tsetse fly unraveled

More information: The study is published in BMC Genomics.

Provided by University of Edinburgh

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Rectal artemisinins rapidly eliminate malarial parasites

Mar 28, 2008

Artemisinin-based suppositories can help ‘buy time’ for malaria patients who face a delay in accessing effective, injectable antimalarials, according to research published in the online open access journal BMC Infectious Di ...

Scientists develop new drug treatment for malaria

Aug 16, 2010

As part of the £1.5 million project, researchers are now testing the drug to determine how the treatment could progress to clinical trials. The drug is made from simple organic molecules and will be cheaper to mass produce ...

Recommended for you

Genetic code of the deadly tsetse fly unraveled

11 hours ago

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Engineered E. coli produces high levels of D-ribose

12 hours ago

D-ribose is a commercially important sugar used as a sweetener, a nutritional supplement, and as a starting compound for synthesizing riboflavin and several antiviral drugs. Genetic engineering of Escherichia co ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...