Scientists discover origin of brain immune cells

Oct 27, 2010

A team of international scientists led by Dr Florent Ginhoux of the Singapore Immunology Network (SIgN) of Singapore's Agency of Science, Technology and Research (A*STAR), have made a breakthrough that could lead to a better understanding of many neurodegenerative and inflammatory brain disorders. Their work, published in top scientific journal Science, uncovered the origins of microglia, which are white blood cells specific to the brain, and showed that, in mice, microglia had a completely different origin than other white blood cells. This understanding may lead to the development of new strategies to manipulate microglia for the treatment of various brain disorders.

Microglia have been implicated in many neurodegenerative and inflammatory , underscoring the need to study and understand these cells. Dr Ginhoux's team is the first to show that microglia, unlike other white blood cells, are derived from a particular structure in the mouse embryo (the embryonic yolk-sac), implying that microglia may have specific functional properties not shared by other .

In addition, Dr Ginhoux is the first to directly visualise how microglia develop in the brain. This will advance basic understanding of the mouse immune system, which is needed to understand how controlling the development of the precursors of microglia may one day be used to treat brain diseases in humans.

Prof Paola Castagnoli, Scientific Director of SIgN, commented, " and inflammatory brain disorders are a major cause of suffering in the world. At SIgN, our focus and mission is to study human immunology and in particular, inflammatory reactions in human diseases. Inflammation occurs when the immune system overreacts to "danger" signals that can either be infectious or non-infectious, for instance, caused by cell or tissue damage. We know that the does not work in isolation within the body, and that the interactions between immune and brain cells is occurring all the time. Therefore a better knowledge of the microglial cells' function and origin will open new avenues in the field of neuro-immunology."

Said Dr Ginhoux, "Several key experiments which were crucial to my work could only have been completed in SIgN. In particular, my work involved the use of a type of microscopy to directly visualise, in a living cell culture, how microglia colonise the brain. This is the first time this sort of work has been done, and it couldn't have been possible without the help of Dr. Lai Guan Ng, my colleague here at SIgN."

Dr Ginhoux plans to continue his investigation into how the unique origin of microglia, as compared to other white blood cell populations in the body, could give rise to the properties of microglia that makes them especially suitable for their role in the brain.

Explore further: Treatment for overactive bladder and irritable bowel syndrome advanced through pioneering research

More information: The research findings described in the press release can be found in the 21 October, 2010 advance online issue of Science under the title "Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages".

Provided by Agency for Science, Technology and Research (A*STAR)

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Researchers discover origin of immune cells in the brain

Oct 22, 2010

Mount Sinai researchers have discovered that microglia, the immune cells that reside in the brain, have a unique origin and are formed shortly after conception. It was previously thought that microglia originated at the ...

How does microglia examine damaged synapses?

Mar 31, 2009

Microglia, immune cells in the brain, is suggested to be involved in the repair of damaged brain, like a medical doctor. However, it is completely unknown how microglia diagnoses damaged circuits in an in vivo brain. Japanese ...

Immune system linked with accumulation of toxic tau protein

Oct 06, 2010

Cells that help to protect the central nervous system may also contribute to pathological changes in the brain. New research, published by Cell Press in the October 7th issue of the journal Neuron, provides mechanistic insigh ...

Blocking toxic effects could make clot-buster safer

Jan 23, 2009

Since the introduction of the life-saving clot-busting drug tPA more than a decade ago, evidence has been accumulating that tPA (tissue-type plasminogen activator) can be a double-edged sword for a brain affected by stroke. ...

Recommended for you

The impact of bacteria in our guts

14 hours ago

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

14 hours ago

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

15 hours ago

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments : 0