Eat safer: Novel approach detects unknown food pathogens

Oct 15, 2010

Technologies for rapid detection of bacterial pathogens are crucial to maintaining a secure food supply.

Researchers from the School of Science at Indiana University-Purdue University Indianapolis (IUPUI) and the Bindley Bioscience Center at Purdue University have developed a novel approach to automated detection and classification of in food. The investigators have designed and implemented a sophisticated that allows computers to improve their ability to detect the presence of in tested samples. These formulas propel machine-learning, enabling the identification of known and unknown classes of food .

The study appears in the October issue of the journal Statistical Analysis and Data Mining.

"The sheer number of existing bacterial pathogens and their high mutation rate makes it extremely difficult to automate their detection," said M. Murat Dundar, Ph.D., assistant professor of computer science in the School of Science at IUPUI and the university's principal investigator of the study. "There are thousands of different bacteria subtypes and you can't collect enough subsets to add to a computer's memory so it can identify them when it sees them in the future. Unless we enable our equipment to modify detection and identification based on what it has already seen, we may miss discovering isolated or even major outbreaks."

To detect and identify colonies of pathogens such as listeria, staphylococcus, salmonella, vibrio and E. coli based on the of their colonies, the researchers used a prototype , developed by Purdue University researchers. Without the new enhanced machine-learning approach, the light-scattering sensor used for classification of bacteria is unable to detect classes of pathogens not explicitly programmed into the system's identification procedure.

"We are very excited because this new machine-learning approach is a major step towards a fully automated identification of known and emerging pathogens in real time, hopefully circumventing full-blown, food-borne illness outbreaks in the near future. Ultimately we would like to see this deployed to tens of centers as part of a national bio-warning system," said Dundar.

"Our work is not based on any particular property of light scattering detection and therefore it can potentially be applied to other label-free techniques for classification of pathogenic bacteria, such as various forms of vibrational spectroscopy," added Bartek Rajwa, Ph.D., the Purdue principal investigator of the study.

Dundar and his colleagues believe this methodology can be expanded to the analysis of blood and other biological samples as well.

Explore further: Passengers boarding airplanes—we're doing it wrong

More information: "A Machine-Learning Approach to Detecting Unknown Bacterial Serovars", Statistical Analysis and Data Mining.

Provided by Indiana University School of Medicine

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Purdue creates new low-cost system to detect bacteria

Jul 27, 2006

Researchers at Purdue University have developed a new low-cost system that analyzes scattered laser light to quickly identify bacteria for applications in medicine, food processing and homeland security at ...

PANTHER sensor quickly detects pathogens

Mar 04, 2008

Researchers at MIT Lincoln Laboratory have developed a powerful sensor that can detect airborne pathogens such as anthrax and smallpox in less than three minutes.

Recommended for you

Passengers boarding airplanes—we're doing it wrong

3 hours ago

'Tis the season for airplane travel. We may be looking forward to getting where we're going, but most aspects of the travel itself are merely endured. There's stressful security, the madding crowd and the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.