Pyrocumulonimbus: Fire-Breathing dragon of the clouds

Oct 21, 2010 By Michael Finneran
Fire-Breathing dragon of the clouds
A pyrocumulonimbus storm combines smoke and fire with the features of a violent thunderstorm. Pollutants from these storms are funneled into the stratosphere. Credit: Naval Research Lab/Mike Fromm

Pyrocumulonimbus is the fire-breathing dragon of clouds. A cumulonimbus without the "pyre" part is imposing enough -- a massive, anvil-shaped tower of power reaching five miles (8 km) high, hurling thunderbolts, wind and rain.

Add smoke and fire to the mix and you have pyrocumulonimbus, an explosive storm cloud actually created by the smoke and heat from fire, and which can ravage tens of thousands of acres. And in the process, "pyroCb" storms funnel their smoke like a chimney into Earth's stratosphere, with lingering ill effects.

Global Impact

Researchers believe these intense storms may be the source of what previously was believed to have been volcanic particles in the stratosphere. They also suggest pyroCbs happen more often than thought, and say they're responsible for a huge volume of pollutants trapped in the .

"An individual pyroCb can inject particles into the lower stratosphere as high as 10 miles," says Dr. Glenn K. Yue, an atmospheric scientist at NASA Langley Research Center in Hampton, Va.

Yue is one of eight authors of a paper on pyrocumulonimbus in the September 2010 (BAMS) titled "The Untold Story of Pyrocumulonimbus."

A pyrocumulonimbus cloud towers over thick smoke from fires burning near Canberra, Australia, in 2003. The cloud's strong winds caused the fires to explode into the Australian city. Credit: New South Wales Rural Fire Service

The paper reevaluates previous data to conclude that many stratospheric pollution events erroneously have been attributed to particles from volcanic eruptions.

Three "mystery cloud phenomena" were cited as examples that were actually the result of pyrocumulonimbus storms, including one initially attributed to the 1991 eruption of Mount Pinatubo in the Philippines. The plume thought to have been from Pinatubo was, it turns out, from a pyrocumulonimbus storm in Canada.

One reason for the misinterpretation, Yue said, is that scientists believed nothing less energetic than a volcanic eruption could penetrate Earth's "tropopause" in so short a period of time. The tropopause is the barrier between the lower atmosphere and stratosphere.

"At the time, the thinking was that it was unlikely," said Yue.

SAGE II Data

Yue reevaluated data he'd analyzed years earlier from NASA Langley's SAGE II instrument on the Earth Radiation Budget Satellite. SAGE II was launched in 1984 and turned off in 2005.

"Our paper also shows that pyroCbs happen more often than people realize," Yue added. In 2002, for example, various sensing instruments detected 17 distinct pyrocumulonimbus events in North America alone.

Humans have been responsible for many pyrocumulonimbus storms, says Mike Fromm, lead author on the BAMS paper.

The worst fire in Colorado history was set by a forestry officer "and within 24 hours there was a pyrocumulonimbus storm," says Fromm, a meteorologist at the Naval Research Laboratory in Washington, D.C. Whipped by the storm it had sparked, the 2002 fire swept across 138,000 acres (558.5 sq km) in four counties, drove more than 5,000 from their homes and killed six people.

Whether human actions influence pyrocumulonimbus activity enough to significantly impact the global climate is an open question. Human activity is believed to cause climate warming that leads to more wildfires.

"It's a compelling story line. We don't know enough now to say if there's enough supporting evidence of that," says Fromm.

"There's lots of fairly convincing evidence that under a warming climate, there are forest areas of Siberia and Canada that will be under more heat stress than before. And it's reasonable to think that there will be more fires."

Explore further: Earthquakes occur in 4 parts of Alaska

Related Stories

Scientist seeing clearly the effects of pyrocumulonimbus

Aug 26, 2010

Wildfires can wreak widespread havoc and devastation, affecting environmental assets lives, property and livelihoods. Meteorologist Mike Fromm of the Naval Research Laboratory, in collaboration with several ...

Fires around Moscow: A satellite perspective

Aug 13, 2010

Space scientists at the University of Leicester have released satellite images of vast plumes of smoke emanating from the peat bog fires which are currently sweeping across central and western Russia.

NASA airborne expedition chases climate, ozone questions

Jun 27, 2007

NASA's Tropical Composition, Cloud and Climate Coupling (TC4) field campaign will begin this summer in San Jose, Costa Rica, with an investigation into how chemical compounds in the air are transported vertically into the ...

Tibet Pathway for Chemicals To Reach Stratosphere

May 10, 2006

NASA and Georgia Tech researchers have found that thunderstorms over Tibet provide a main pathway for water vapor and chemicals to travel from the lower atmosphere, where human activity directly affects atmospheric ...

Volcanic blast influences climate

Aug 12, 2005

The volcanic ash cloud created by a volcanic blast can alter interactions between the atmosphere and sun, affecting climate patterns, say U.S. scientists.

Recommended for you

Tropical Storm Genevieve forms in Eastern Pacific

22 hours ago

The seventh tropical depression of the Eastern Pacific Ocean formed and quickly ramped up to a tropical storm named "Genevieve." NOAA's GOES-West satellite captured an infrared image of the newborn storm ...

NASA maps Typhoon Matmo's Taiwan deluge

Jul 25, 2014

When Typhoon Matmo crossed over the island nation of Taiwan it left tremendous amounts of rainfall in its wake. NASA used data from the TRMM satellite to calculate just how much rain fell over the nation.

User comments : 0