Novel protein critical for cellular proliferation discovered

Oct 07, 2010

Accurate duplication of genetic material and the faithful segregation of chromosomes are critical for cell survival. The initiation of DNA replication is linked both to cell cycle progression and chromatin organization. In plants, animals and other "eukaryotes," the assembly of a multi-protein complex called pre-replicative complex (preRC) is the first step in the initiation of DNA replication. As the name implies, origin recognition complex (ORC) proteins bind to origins of DNA replication. Subsequently, other components of preRC are assembled at these sites. In addition to its role in DNA replication, ORC is also involved in gene silencing and organization of the tightly packed DNA, called heterochromatin. How ORC is brought to the DNA in human cells had previously remained a mystery.

Researchers at the University of Illinois, led by Professor Supriya Prasanth from the school of molecular and cellular biology, have identified a novel protein that is highly conserved in higher eukaryotes. They have shown that in human cells, this protein (once known as LRWD1 but renamed ORCA, for "ORC-associated" protein) associates with ORC and shows similar cell cycle dynamics to ORC. Along with ORC, this protein binds to heterochromatic structures, including centromeres and telomeres, which are important to cell division and chromosome maintenance.

The researchers further demonstrated that ORCA efficiently recruits ORC to chromatin, the DNA and proteins that make up the chromosome. Depletion of ORCA in human primary cells as well as in results in the loss of ORC binding to chromatin and subsequent arrest of cells in a vital phase of the cell cycle. Loss of ORCA results in defects in cellular proliferation, suggesting that a fine-tuned balance in the levels of ORCA is maintained in a normal cell. These results suggest that a novel protein, ORCA, is critical for initiation of and heterochromatin organization in .

This work appears in the October 8, 2010 issue of the journal Molecular Cell.

"The discovery of this new protein is going to be revolutionary in the field of replication and cell cycle," Prasanth said. "We all know that diseases like cancer are caused by uncontrolled proliferation of cells, and our data demonstrates that ORCA controls proliferation of cells. This work is going to have important implications in cancer biology."

Explore further: Understanding how cells follow electric fields

Related Stories

Common mechanisms for viral DNA replication

Jan 23, 2007

How DNA replicates is a critical question for understanding life. DNA replication remains difficult to investigate in eukaryotes,where it occurs within the confines of the double-membrane nucleus.

Chromatin remodeling complex connected to DNA damage control

Aug 09, 2007

When molecular disaster strikes, causing structural damage to DNA, players in two important pathways talk to each other to help contain the wreckage, scientists at The University of Texas M. D. Anderson Cancer Center report ...

Recommended for you

Understanding how cells follow electric fields

13 hours ago

Many living things can respond to electric fields, either moving or using them to detect prey or enemies. Weak electric fields may be important growth and development, and in wound healing: it's known that ...

Protein scaffold

May 27, 2015

Right before a cell starts to divide to give birth to a daughter cell, its biochemical machinery unwinds the chromosomes and copies the millions of protein sequences comprising the cell's DNA, which is packaged ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.