The noise about graphene

Oct 15, 2010 by Aditi Risbud
This image of a single suspended sheet of graphene taken with the TEAM 0.5, at Berkeley Lab’s National Center for Electron Microscopy shows individual carbon atoms (yellow) on the honeycomb lattice.

(PhysOrg.com) -- In last week’s announcement of the Nobel Prize in Physics, the Royal Swedish Academy of Sciences lauded graphene’s "exceptional properties that originate from the remarkable world of quantum physics." If it weren’t hot enough before, this atomically thin sheet of carbon is now officially in the global spotlight.

The promise of graphene lies in the simplicity of its structure—a ‘chicken wire’ lattice of carbon atoms just one layer thick. This sheet confines electrons in one dimension, forcing them to race across a plane. Such quantum confinement results in stellar electronic, mechanical and optical properties far beyond what silicon and other traditional semiconductor materials offer. What’s more, if graphene’s electrons were restricted in two dimensions, like in a nanoribbon, it could greatly benefit logic switching devices—the basis for computation units in today’s computer chips.

Now, Berkeley Labs materials scientist Yuegang Zhang and colleagues at University of California, Los Angeles are moving toward more efficient devices by studying the ‘noise’ in such graphene nanoribbons—one-dimensional strips of graphene with nanometer-scale widths.

“Atomically-thin graphene nanoribbons have provided an excellent platform for us to reveal the strong correlation between fluctuation and the quantized electronic structures of quasi-one-dimensional systems,” says Zhang, a staff scientist in the Inorganic Nanostructures Facility at the Molecular Foundry. “This method should have much broader use to understand quantum transport phenomena in other nanoelectronic or molecular devices.”

Zhang and colleagues previously reported ways of fabricating films of graphene (phys.org/news189954890.html) and revealing low-frequency signal-to-noise ratios for graphene devices on a silica substrate (phys.org/news200314797.html). ;

In the current study, the team made graphene nanoribbons using a nanowire mask-based fabrication technique. By measuring the conductance fluctuation, or ‘noise’ of electrons in graphene nanoribbons, the researchers directly probed the effect of quantum confinement in these structures. Their findings map the electronic band structure of these graphene nanoribbons using a robust electrical probing method. This method can be further applied to a wide array of nanoscale materials, including graphene-based electronic devices.

“It amazes us to observe such a clear correlation between the noise and the band structure of these graphene nanomaterials,” says lead author Guangyu Xu, a physicist at University of California, Los Angeles. “This work adds strong support to the quasi-one-dimensional subband formation in graphene nanoribbons, in which our method turns out to be much more robust than conductance measurement.”

A paper reporting this research titled, “Enhanced conductance fluctuation by quantum confinement effect in nanoribbons,” appears in Nano Letters and is available to subscribers online . Co-authoring the paper with Zhang and Xu were Carlos Torres, Jr., Emil Song, Jianshi Tang, Jingwei Bai, Xiangfeng Duan and Kang L. Wang.

Portions of this work at the Molecular Foundry were supported by DOE’s Office of Science.

Explore further: Atom-thick CCD could capture images: Scientists develop two-dimensional, light-sensitive material

Related Stories

Turning down the noise in graphene

Aug 06, 2010

(PhysOrg.com) -- Graphene is a two-dimensional crystalline sheet of carbon atoms - meaning it is only one atom thick - through which electrons can race at nearly the speed of light - 100 times faster than ...

Can graphene nanoribbons replace silicon?

Feb 18, 2010

(PhysOrg.com) -- "Graphene has been the subject of intense focus and research for a few years now," Philip Kim tells PhysOrg.com. "There are researchers that feel that it is possible that graphene could replac ...

Light-speed nanotech: Controlling the nature of graphene

Jan 21, 2009

Researchers at Rensselaer Polytechnic Institute have discovered a new method for controlling the nature of graphene, bringing academia and industry potentially one step closer to realizing the mass production ...

Graphene films clear major fabrication hurdle

Apr 08, 2010

Graphene, the two-dimensional crystalline form of carbon, is a potential superstar for the electronics industry. With freakishly mobile electrons that can blaze through the material at nearly the speed of ...

Recommended for you

The simplest element: Turning hydrogen into 'graphene'

Dec 16, 2014

New work from Carnegie's Ivan Naumov and Russell Hemley delves into the chemistry underlying some surprising recent observations about hydrogen, and reveals remarkable parallels between hydrogen and graphene ...

Future batteries: Lithium-sulfur with a graphene wrapper

Dec 16, 2014

What do you get when you wrap a thin sheet of the "wonder material" graphene around a novel multifunctional sulfur electrode that combines an energy storage unit and electron/ion transfer networks? An extremely ...

User comments : 5

Adjust slider to filter visible comments by rank

Display comments: newest first

SDrapak
4 / 5 (1) Oct 15, 2010
"This sheet confines electrons in one dimension, forcing them to race across a plane"

A plane is two dimensions...
Megadeth312
3.2 / 5 (5) Oct 15, 2010
"This sheet confines electrons in one dimension, forcing them to race across a plane"

A plane is two dimensions...


Yes... the third dimension is the one that is confined... leaving 2 unconfined dimensions... IE a plane...
CouchP
2.5 / 5 (2) Oct 15, 2010
Atoms are not considered points therefor they are not constrained to two dimensions.
douglas2
5 / 5 (1) Oct 15, 2010
all interactions with neighbors are restricted to the plane even though the layer has a finite size. there are no lattice neighbors in a layer above or below.
TechnoCore
not rated yet Oct 20, 2010
@removed

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.