Neuroscientists discover nicotine could play role in Alzheimer's disease therapy

Oct 13, 2010

A team of neuroscientists has discovered important new information in the search for an effective treatment for Alzheimer's disease, the debilitating neurological disorder that afflicts more than 5.3 million Americans and is the sixth-leading cause of death in the United States. Hey-Kyoung Lee, associate professor in the University of Maryland Department of Biology, and her research team have shown that they may be able to eliminate debilitating side effects caused by a promising Alzheimer's drug by stimulating the brain's nicotine receptors.

Scientists believe that an over-production of a peptide called A-beta in the is the cause of Alzheimer's and are developing drug treatments that prevent the action of the enzyme BACE1, which produces A-beta. But Lee and her team, including University of Maryland and Johns Hopkins University researchers, previously demonstrated that eliminating – or "knocking out" – the BACE1 enzyme in laboratory mice caused some of the test animals to become confused and aggressive. "The mice exhibit signs of schizophrenia and memory loss when you block the enzyme," says Lee. "BACE1 is a very promising drug target, but you have to overcome these obviously debilitating side effects to effectively treat ."

Lee and her colleagues have been searching for a solution that could circumvent the abnormal brain function and behavioral caused by BACE1 inhibition, and they think they may have found it. They pinpointed the receptor that is targeted by , the Alpha7 nicotinic acetylcholine receptor, as a potential therapeutic target. A paper describing their breakthrough appears in the current issue of the Journal of Neuroscience.

"By stimulating the Alpha7 receptor with nicotine, we were able to recover normal brain function," explains Lee. "We are very hopeful that this will be a way to overcome the deficits seen with the BACE-1 knockouts."

The research group pinpointed the brain dysfunction to the regulation of calcium uptake by neurons. Calcium triggers the release of neurotransmitters, the chemicals which transmit signals from a neuron to a target cell across a synapse.

"The mice with BACE1 knockouts have less calcium signaling in the pre-synaptic neuron, and that is why they were releasing less neurotransmitters," Lee says. "We looked at what receptors on the pre-synaptic terminal were linked to a calcium signaling pathway. This Alpha7 receptor happens to be on one of the pre-synaptic receptors that is a calcium channel, and we thought we could use that to enhance the calcium signaling."

The research team found that nicotine activated the uptake of calcium, and thus the neurotransmitter release mechanism.

"After treatment with nicotine," says Lee, "the mice released normal amounts of the neurotransmitter as seen in brains of normal animals."

Lee is optimistic about the potential of this discovery, but also says that behavioral studies still need to be conducted to determine if BACE1 knockout mice treated with nicotine will behave normally. Her colleague at Johns Hopkins University, Philip C. Wong, professor of pathology and neuroscience and a co-author on this study, will be conducting these behavior studies as a follow up.

"If you tag along nicotine or anything that can activate this receptor along with the BACE1 inhibitor, then you probably can recover the function better," Lee asserts. "It is an exciting development because nicotine is an already known drug that could be easily used therapeutically with Alzheimer's treatment."

Until recently, challenges in getting a drug that could pass through the blood-brain barrier prevented the development of an effective BACE1 inhibitor drug for use in humans, but recently scientists have developed one that can be taken orally. The University of Maryland and Johns Hopkins University are filing a patent application on the therapeutic treatment that Lee and her colleagues have developed targeting the Alpha7 nicotine receptor. It is possible that this therapy may be one day packaged with BACE1 inhibitor drugs to treat Alzheimer's disease and block its progression.

Explore further: Long-term effects of battle-related 'blast plus impact' concussive TBI in US military

More information: "Mossy Fiber Long-Term Potentiation Deficits in BACE1 Knock-Outs Can Be Rescued by Activation of Alpha7 Nicotinic Acetylcholine Receptors", Journal of Neuroscience.

add to favorites email to friend print save as pdf

Related Stories

Researchers discover new link to schizophrenia

May 08, 2008

Neuroscientists at Johns Hopkins have discovered that mice lacking an enzyme that contributes to Alzheimer disease exhibit a number of schizophrenia-like behaviors. The finding raises the possibility that this enzyme may ...

Mechanism of nicotine's learning effects explored

Apr 04, 2007

While nicotine is highly addictive, researchers have also shown the drug to enhance learning and memory—a property that has launched efforts to develop nicotine-like drugs to treat cognitive deficits in Alzheimer’s and ...

Protein regulates enzyme linked to Alzheimer's disease

May 25, 2010

Researchers at Tufts University School of Medicine have zeroed in on a protein that may play a role in the progression of Alzheimer's disease. The team found that increasing levels of the protein (called GGA3) prevented the ...

Recommended for you

Know the brain, and its axons, by the clothes they wear

5 hours ago

(Medical Xpress)—It is widely know that the grey matter of the brain is grey because it is dense with cell bodies and capillaries. The white matter is almost entirely composed of lipid-based myelin, but ...

Turning off depression in the brain

Apr 17, 2014

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

Rapid whole-brain imaging with single cell resolution

Apr 17, 2014

A major challenge of systems biology is understanding how phenomena at the cellular scale correlate with activity at the organism level. A concerted effort has been made especially in the brain, as scientists are aiming to ...

User comments : 0

More news stories

Suddenly health insurance is not for sale

(HealthDay)— Darlene Tucker, an independent insurance broker in Scotts Hill, Tenn., says health insurers in her area aren't selling policies year-round anymore.

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...