NC State develops more precise genetic 'off switches'

October 28, 2010

Researchers at North Carolina State University have found a way to "cage" genetic off switches in such a way that they can be activated when exposed to UV light. Their technology gives scientists a more precise way to control and study gene function in localized areas of developing organisms.

The off switches, called morpholino oligonucleotides, are like short snippets of DNA that, when introduced into cells, bind to target RNA molecules, effectively turning off specific genes. Morpholinos have been used as genetic switches in many animal models, including the zebrafish embryo. However, morpholinos are distributed throughout dividing cells in a developing embryo, thereby turning off the specific gene everywhere. Moreover, they are active right after injection, silencing the targeted gene throughout development of the organism. Such uncontrolled genetic disruption makes studying tissue-specific and time-specific gene function difficult.

Dr. Alex Deiters, associate professor of chemistry, Dr. Jeffrey Yoder, associate professor of molecular biomedical sciences, and a team of NC State researchers developed a new methodology to turn off genes at a specific time and in a specific region of an organism. Deiters' team devised a way to synthesize morpholinos that would only bind with after a brief exposure to UV light, effectively "caging" the morpholino and providing a method for precisely controlling the genetic off switch. Yoder's team then tested the new photo-caged morpholinos in a zebrafish model and confirmed that they performed as expected: the caged morpholinos did not disrupt gene function unless the were briefly exposed to .

The researchers' results appear online in the .

Explore further: Zebrafish to shed light on human mitochondrial diseases

More information: "Photocaged Morpholino Oligomers for the Light-Regulation of Gene Function in Zebrafish and Xenopus Embryos" Authors: Alexander Deiters, R. Aaron Garner, Hrvoje Lusic, Jeane M. Govan, Mike Dush, Nanette M. Nascone-Yoder, and Jeffrey A. Yoder, NC State University Published: online in the Journal of the American Chemical Society.

Related Stories

Zebrafish to shed light on human mitochondrial diseases

September 13, 2007

Zebrafish can now be used to study COX deficiencies in humans, a discovery that gives scientists an unprecedented window to view the earliest stages of mitochondrial impairments that lead to potentially fatal metabolic disorders, ...

Deadly genetic disease prevented before birth in zebrafish

March 20, 2008

By injecting a customized "genetic patch" into early stage fish embryos, researchers at Washington University School of Medicine in St. Louis were able to correct a genetic mutation so the embryos developed normally.

Scientists achieve first rewire of genetic switches

January 25, 2010

Researchers in Manchester have successfully carried out the first rewire of genetic switches, creating what could be a vital tool for the development of new drugs and even future gene therapies.

Recommended for you

The universe's most miraculous molecule

October 9, 2015

It's the second most abundant substance in the universe. It dissolves more materials than any other solvent. It stores incredible amounts of energy. Life as we know it would not be possible without it. And although it covers ...

New method facilitates research on fuel cell catalysts

October 8, 2015

While the cleaning of car exhausts is among the best known applications of catalytic processes, it is only the tip of the iceberg. Practically the entire chemical industry relies on catalytic reactions. Therefore, catalyst ...

Trio wins Nobel Prize for mapping how cells fix DNA damage

October 7, 2015

Tomas Lindahl was eating his breakfast in England on Wednesday when the call came—ostensibly, from the Royal Swedish Academy of Sciences. It occurred to him that this might be a hoax, but then the caller started speaking ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.